{"title":"Ductile Fracture Modeling of Flaw-Containing Additively Manufactured SS316L: Application to Complex Structures","authors":"E. T. Furton, A. M. Beese","doi":"10.1007/s11340-024-01141-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>To ensure reliability of additively manufactured components in structural applications, an understanding of the combined behavior of pores and stress state on failure behavior is required.</p><h3>Objective</h3><p>This research aims to identify the capabilities and limitations of stress- and strain-based fracture models in describing failure in complex additively manufactured structures.</p><h3>Methods</h3><p>SS316L brackets with a three-dimensional truss-based geometry, in which stress state and pore size varied among struts, were fabricated with laser powder bed fusion. Fracture models considering both stress state and pore size, formulated in terms of stress (pore-size dependent Mohr–Coulomb, or P-MC) and strain (pore-size dependent Modified Mohr–Coulomb, or P-MMC), were calibrated and used to predict the fracture behavior of the brackets.</p><h3>Results</h3><p>The P-MMC fracture model correctly predicted the experimentally observed fracture locations for 11 out of 12 samples, while the P-MC fracture model correctly predicted 10 out of 12 samples. Below a critical pore size, stress state effects dominated the fracture behavior, and above this, pore size was the critical factor, where capturing both factors was crucial at intermediate pore sizes.</p><h3>Conclusions</h3><p>The P-MC fracture model was appropriate for predicting the maximum load-bearing capacity for all samples in this study, while the P-MMC fracture model was shown to be only applicable for samples containing small pores. The importance of incorporating both stress state and the presence of pores in a fracture model is necessary to ensure confidence in the load carrying capacity of additively manufactured structures.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"65 4","pages":"523 - 539"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01141-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
To ensure reliability of additively manufactured components in structural applications, an understanding of the combined behavior of pores and stress state on failure behavior is required.
Objective
This research aims to identify the capabilities and limitations of stress- and strain-based fracture models in describing failure in complex additively manufactured structures.
Methods
SS316L brackets with a three-dimensional truss-based geometry, in which stress state and pore size varied among struts, were fabricated with laser powder bed fusion. Fracture models considering both stress state and pore size, formulated in terms of stress (pore-size dependent Mohr–Coulomb, or P-MC) and strain (pore-size dependent Modified Mohr–Coulomb, or P-MMC), were calibrated and used to predict the fracture behavior of the brackets.
Results
The P-MMC fracture model correctly predicted the experimentally observed fracture locations for 11 out of 12 samples, while the P-MC fracture model correctly predicted 10 out of 12 samples. Below a critical pore size, stress state effects dominated the fracture behavior, and above this, pore size was the critical factor, where capturing both factors was crucial at intermediate pore sizes.
Conclusions
The P-MC fracture model was appropriate for predicting the maximum load-bearing capacity for all samples in this study, while the P-MMC fracture model was shown to be only applicable for samples containing small pores. The importance of incorporating both stress state and the presence of pores in a fracture model is necessary to ensure confidence in the load carrying capacity of additively manufactured structures.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.