Computational Statistics & Data Analysis最新文献

筛选
英文 中文
Fusion regression methods with repeated functional data 重复功能数据的融合回归方法
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-27 DOI: 10.1016/j.csda.2024.108069
Issam-Ali Moindjié , Cristian Preda , Sophie Dabo-Niang
{"title":"Fusion regression methods with repeated functional data","authors":"Issam-Ali Moindjié ,&nbsp;Cristian Preda ,&nbsp;Sophie Dabo-Niang","doi":"10.1016/j.csda.2024.108069","DOIUrl":"10.1016/j.csda.2024.108069","url":null,"abstract":"<div><div>Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions related by some neighborhood structure (spatial, group, etc.). Two regression methods based on fusion penalties are proposed to consider the dependence induced by this structure. These methods aim to obtain parsimonious coefficient regression functions, by determining if close conditions are associated with common regression coefficient functions. The first method is a generalization to functional data of the variable fusion methodology based on the 1-nearest neighbor. The second one relies on the group fusion lasso penalty which assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. Numerical simulations and an application of electroencephalography data are presented.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108069"},"PeriodicalIF":1.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-penalized approach to hypothesis testing in high-dimensional linear mediation models 高维线性中介模型假设检验的双重惩罚方法
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-24 DOI: 10.1016/j.csda.2024.108064
Chenxuan He , Yiran He , Wangli Xu
{"title":"A dual-penalized approach to hypothesis testing in high-dimensional linear mediation models","authors":"Chenxuan He ,&nbsp;Yiran He ,&nbsp;Wangli Xu","doi":"10.1016/j.csda.2024.108064","DOIUrl":"10.1016/j.csda.2024.108064","url":null,"abstract":"<div><div>The field of mediation analysis, specifically high-dimensional mediation analysis, has been arousing great interest due to its applications in genetics, economics and other areas. Mediation analysis aims to investigate how exposure variables influence outcome variable via mediators, and it is categorized into direct and indirect effects based on whether the influence is mediated. A novel hypothesis testing method, called the dual-penalized method, is proposed to test direct and indirect effects. This method offers mild conditions and sound theoretical properties. Additionally, the asymptotic distributions of the proposed estimators are established to perform hypothesis testing. Results from simulation studies demonstrate that the dual-penalized method is highly effective, especially in weak signal settings. Further more, the application of this method to the childhood trauma data set reveals a new mediator with a credible basis in biological processes.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108064"},"PeriodicalIF":1.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tree approach for variable selection and its random forest 变量选择树方法及其随机森林
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-18 DOI: 10.1016/j.csda.2024.108068
Yu Liu , Xu Qin , Zhibo Cai
{"title":"A tree approach for variable selection and its random forest","authors":"Yu Liu ,&nbsp;Xu Qin ,&nbsp;Zhibo Cai","doi":"10.1016/j.csda.2024.108068","DOIUrl":"10.1016/j.csda.2024.108068","url":null,"abstract":"<div><div>The Sure Independence Screening (SIS) provides a fast and efficient ranking for the importance of variables for ultra-high dimensional regressions. However, classical SIS cannot eliminate false importance in the ranking, which is exacerbated in nonparametric settings. To address this problem, a novel screening approach is proposed by partitioning the sample into subsets sequentially and creating a tree-like structure of sub-samples called SIS-tree. SIS-tree is straightforward to implement and can be integrated with various measures of dependence. Theoretical results are established to support this approach, including its “sure screening property”. Additionally, SIS-tree is extended to a forest with improved performance. Through simulations, the proposed methods are demonstrated to have great improvement comparing with existing SIS methods. The selection of a cutoff for the screening is also investigated through theoretical justification and experimental study. As a direct application, classifications of high-dimensional data are considered, and it is found that the screening and cutoff can substantially improve the performance of existing classifiers. The proposed approaches can be implemented using R package “SIStree” at <span><span>https://github.com/liuyu-star/SIStree</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108068"},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online graph topology learning from matrix-valued time series 从矩阵值时间序列在线图拓扑学习
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-16 DOI: 10.1016/j.csda.2024.108065
Yiye Jiang , Jérémie Bigot , Sofian Maabout
{"title":"Online graph topology learning from matrix-valued time series","authors":"Yiye Jiang ,&nbsp;Jérémie Bigot ,&nbsp;Sofian Maabout","doi":"10.1016/j.csda.2024.108065","DOIUrl":"10.1016/j.csda.2024.108065","url":null,"abstract":"<div><p>The focus is on the statistical analysis of matrix-valued time series, where data is collected over a network of sensors, typically at spatial locations, over time. Each sensor records a vector of features at each time point, creating a vectorial time series for each sensor. The goal is to identify the dependency structure among these sensors and represent it with a graph. When only one feature per sensor is observed, vector auto-regressive (VAR) models are commonly used to infer Granger causality, resulting in a causal graph. The first contribution extends VAR models to matrix-variate models for the purpose of graph learning. Additionally, two online procedures are proposed for both low and high dimensions, enabling rapid updates of coefficient estimates as new samples arrive. In the high-dimensional setting, a novel Lasso-type approach is introduced, and homotopy algorithms are developed for online learning. An adaptive tuning procedure for the regularization parameter is also provided. Given that the application of auto-regressive models to data typically requires detrending, which is not feasible in an online context, the proposed AR models are augmented by incorporating trend as an additional parameter, with a particular focus on periodic trends. The online algorithms are adapted to these augmented data models, allowing for simultaneous learning of the graph and trend from streaming samples. Numerical experiments using both synthetic and real data demonstrate the effectiveness of the proposed methods.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108065"},"PeriodicalIF":1.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A variational inference framework for inverse problems 逆问题的变分推理框架
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-16 DOI: 10.1016/j.csda.2024.108055
Luca Maestrini , Robert G. Aykroyd , Matt P. Wand
{"title":"A variational inference framework for inverse problems","authors":"Luca Maestrini ,&nbsp;Robert G. Aykroyd ,&nbsp;Matt P. Wand","doi":"10.1016/j.csda.2024.108055","DOIUrl":"10.1016/j.csda.2024.108055","url":null,"abstract":"<div><div>A framework is presented for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy and reduced model fitting times. The message passing and factor graph fragment approach to variational Bayes that is also described facilitates streamlined implementation of approximate inference algorithms and allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Models for one- and two-dimensional response variables are examined and an infrastructure is laid down where efficient algorithm updates based on nullifying weak interactions between variables can also be derived for inverse problems in higher dimensions. An image processing application and a simulation exercise motivated by biomedical problems reveal the computational advantage offered by efficient implementation of variational Bayes over Markov chain Monte Carlo.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108055"},"PeriodicalIF":1.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001397/pdfft?md5=85a537d37759205b0ecbf4270e7221f7&pid=1-s2.0-S0167947324001397-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spline regression with automatic knot selection 带有自动结点选择功能的样条回归
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-16 DOI: 10.1016/j.csda.2024.108043
Vivien Goepp , Olivier Bouaziz , Grégory Nuel
{"title":"Spline regression with automatic knot selection","authors":"Vivien Goepp ,&nbsp;Olivier Bouaziz ,&nbsp;Grégory Nuel","doi":"10.1016/j.csda.2024.108043","DOIUrl":"10.1016/j.csda.2024.108043","url":null,"abstract":"<div><div>Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called <em>knots</em>. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for <em>adaptive splines</em> – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108043"},"PeriodicalIF":1.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-CoRM: A Bayesian approach for n-gram profiles analysis Beta-CoRM:用于 n-gram 剖面分析的贝叶斯方法
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-09-10 DOI: 10.1016/j.csda.2024.108056
José A. Perusquía , Jim E. Griffin , Cristiano Villa
{"title":"Beta-CoRM: A Bayesian approach for n-gram profiles analysis","authors":"José A. Perusquía ,&nbsp;Jim E. Griffin ,&nbsp;Cristiano Villa","doi":"10.1016/j.csda.2024.108056","DOIUrl":"10.1016/j.csda.2024.108056","url":null,"abstract":"<div><p><em>n</em>-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for <em>n</em>-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108056"},"PeriodicalIF":1.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001403/pdfft?md5=9000ddccd99ed2327e978f13456b5381&pid=1-s2.0-S0167947324001403-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum profile Hellinger distance estimation of general covariate models 一般协变量模型的最小剖面海灵格距离估计
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-08-30 DOI: 10.1016/j.csda.2024.108054
Bowei Ding , Rohana J. Karunamuni , Jingjing Wu
{"title":"Minimum profile Hellinger distance estimation of general covariate models","authors":"Bowei Ding ,&nbsp;Rohana J. Karunamuni ,&nbsp;Jingjing Wu","doi":"10.1016/j.csda.2024.108054","DOIUrl":"10.1016/j.csda.2024.108054","url":null,"abstract":"<div><p>Covariate models, such as polynomial regression models, generalized linear models, and heteroscedastic models, are widely used in statistical applications. The importance of such models in statistical analysis is abundantly clear by the ever-increasing rate at which articles on covariate models are appearing in the statistical literature. Because of their flexibility, covariate models are increasingly being exploited as a convenient way to model data that consist of both a response variable and one or more covariate variables that affect the outcome of the response variable. Efficient and robust estimates for broadly defined semiparametric covariate models are investigated, and for this purpose the minimum distance approach is employed. In general, minimum distance estimators are automatically robust with respect to the stability of the quantity being estimated. In particular, minimum Hellinger distance estimation for parametric models produces estimators that are asymptotically efficient at the model density and simultaneously possess excellent robustness properties. For semiparametric covariate models, the minimum Hellinger distance method is extended and a minimum profile Hellinger distance estimator is proposed. Its asymptotic properties such as consistency are studied, and its finite-sample performance and robustness are examined by using Monte Carlo simulations and three real data analyses. Additionally, a computing algorithm is developed to ease the computation of the estimator.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108054"},"PeriodicalIF":1.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001385/pdfft?md5=cefa2d178122667194291a858ff4b934&pid=1-s2.0-S0167947324001385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust direction estimation in single-index models via cumulative divergence 通过累积发散在单指数模型中进行稳健的方向估计
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-08-30 DOI: 10.1016/j.csda.2024.108052
Shuaida He , Jiarui Zhang , Xin Chen
{"title":"Robust direction estimation in single-index models via cumulative divergence","authors":"Shuaida He ,&nbsp;Jiarui Zhang ,&nbsp;Xin Chen","doi":"10.1016/j.csda.2024.108052","DOIUrl":"10.1016/j.csda.2024.108052","url":null,"abstract":"<div><p>In this paper, we address direction estimation in single-index models, with a focus on heavy-tailed data applications. Our method utilizes cumulative divergence to directly capture the conditional mean dependence between the response variable and the index predictor, resulting in a model-free property that obviates the need for initial link function estimation. Furthermore, our approach allows heavy-tailed predictors and is robust against the presence of outliers, leveraging the rank-based nature of cumulative divergence. We establish theoretical properties for our proposal under mild regularity conditions and illustrate its solid performance through comprehensive simulations and real data analysis.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108052"},"PeriodicalIF":1.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian cluster validity index 贝叶斯聚类有效性指数
IF 1.5 3区 数学
Computational Statistics & Data Analysis Pub Date : 2024-08-30 DOI: 10.1016/j.csda.2024.108053
Onthada Preedasawakul , Nathakhun Wiroonsri
{"title":"A Bayesian cluster validity index","authors":"Onthada Preedasawakul ,&nbsp;Nathakhun Wiroonsri","doi":"10.1016/j.csda.2024.108053","DOIUrl":"10.1016/j.csda.2024.108053","url":null,"abstract":"<div><p>Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108053"},"PeriodicalIF":1.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信