通过累积发散在单指数模型中进行稳健的方向估计

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shuaida He , Jiarui Zhang , Xin Chen
{"title":"通过累积发散在单指数模型中进行稳健的方向估计","authors":"Shuaida He ,&nbsp;Jiarui Zhang ,&nbsp;Xin Chen","doi":"10.1016/j.csda.2024.108052","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address direction estimation in single-index models, with a focus on heavy-tailed data applications. Our method utilizes cumulative divergence to directly capture the conditional mean dependence between the response variable and the index predictor, resulting in a model-free property that obviates the need for initial link function estimation. Furthermore, our approach allows heavy-tailed predictors and is robust against the presence of outliers, leveraging the rank-based nature of cumulative divergence. We establish theoretical properties for our proposal under mild regularity conditions and illustrate its solid performance through comprehensive simulations and real data analysis.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108052"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust direction estimation in single-index models via cumulative divergence\",\"authors\":\"Shuaida He ,&nbsp;Jiarui Zhang ,&nbsp;Xin Chen\",\"doi\":\"10.1016/j.csda.2024.108052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we address direction estimation in single-index models, with a focus on heavy-tailed data applications. Our method utilizes cumulative divergence to directly capture the conditional mean dependence between the response variable and the index predictor, resulting in a model-free property that obviates the need for initial link function estimation. Furthermore, our approach allows heavy-tailed predictors and is robust against the presence of outliers, leveraging the rank-based nature of cumulative divergence. We establish theoretical properties for our proposal under mild regularity conditions and illustrate its solid performance through comprehensive simulations and real data analysis.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"202 \",\"pages\":\"Article 108052\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001361\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001361","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了单指数模型中的方向估计,重点是重尾数据应用。我们的方法利用累积发散来直接捕捉响应变量与指数预测因子之间的条件均值依赖关系,从而实现了无模型属性,无需进行初始链接函数估计。此外,我们的方法允许重尾预测因子,并利用累积发散基于等级的特性,对异常值的存在具有稳健性。我们在温和的规则性条件下为我们的建议建立了理论属性,并通过综合模拟和实际数据分析说明了它的可靠性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust direction estimation in single-index models via cumulative divergence

In this paper, we address direction estimation in single-index models, with a focus on heavy-tailed data applications. Our method utilizes cumulative divergence to directly capture the conditional mean dependence between the response variable and the index predictor, resulting in a model-free property that obviates the need for initial link function estimation. Furthermore, our approach allows heavy-tailed predictors and is robust against the presence of outliers, leveraging the rank-based nature of cumulative divergence. We establish theoretical properties for our proposal under mild regularity conditions and illustrate its solid performance through comprehensive simulations and real data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信