{"title":"Spline regression with automatic knot selection","authors":"Vivien Goepp , Olivier Bouaziz , Grégory Nuel","doi":"10.1016/j.csda.2024.108043","DOIUrl":null,"url":null,"abstract":"<div><div>Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called <em>knots</em>. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for <em>adaptive splines</em> – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called knots. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for adaptive splines – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.