{"title":"贝叶斯聚类有效性指数","authors":"Onthada Preedasawakul , Nathakhun Wiroonsri","doi":"10.1016/j.csda.2024.108053","DOIUrl":null,"url":null,"abstract":"<div><p>Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian cluster validity index\",\"authors\":\"Onthada Preedasawakul , Nathakhun Wiroonsri\",\"doi\":\"10.1016/j.csda.2024.108053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001373\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001373","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.