Computational Statistics最新文献

筛选
英文 中文
Generalized linear model based on latent factors and supervised components 基于潜在因素和监督成分的广义线性模型
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-09-02 DOI: 10.1007/s00180-024-01544-8
Julien Gibaud, Xavier Bry, Catherine Trottier
{"title":"Generalized linear model based on latent factors and supervised components","authors":"Julien Gibaud, Xavier Bry, Catherine Trottier","doi":"10.1007/s00180-024-01544-8","DOIUrl":"https://doi.org/10.1007/s00180-024-01544-8","url":null,"abstract":"<p>In a context of component-based multivariate modeling we propose to model the residual dependence of the responses. Each response of a response vector is assumed to depend, through a Generalized Linear Model, on a set of explanatory variables. The vast majority of explanatory variables are partitioned into conceptually homogeneous variable groups, viewed as explanatory themes. Variables in themes are supposed many and some of them are highly correlated or even collinear. Thus, generalized linear regression demands dimension reduction and regularization with respect to each theme. Besides them, we consider a small set of “additional” covariates not conceptually linked to the themes, and demanding no regularization. Supervised Component Generalized Linear Regression proposed to both regularize and reduce the dimension of the explanatory space by searching each theme for an appropriate number of orthogonal components, which both contribute to predict the responses and capture relevant structural information in themes. In this paper, we introduce random latent variables (a.k.a. factors) so as to model the covariance matrix of the linear predictors of the responses conditional on the components. To estimate the model, we present an algorithm combining supervised component-based model estimation with factor model estimation. This methodology is tested on simulated data and then applied to an agricultural ecology dataset.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SpICE: an interpretable method for spatial data SpICE:空间数据的可解释方法
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-26 DOI: 10.1007/s00180-024-01538-6
Natalia da Silva, Ignacio Alvarez-Castro, Leonardo Moreno, Andrés Sosa
{"title":"SpICE: an interpretable method for spatial data","authors":"Natalia da Silva, Ignacio Alvarez-Castro, Leonardo Moreno, Andrés Sosa","doi":"10.1007/s00180-024-01538-6","DOIUrl":"https://doi.org/10.1007/s00180-024-01538-6","url":null,"abstract":"<p>Statistical learning methods are widely utilised in tackling complex problems due to their flexibility, good predictive performance and ability to capture complex relationships among variables. Additionally, recently developed automatic workflows have provided a standardised approach for implementing statistical learning methods across various applications. However, these tools highlight one of the main drawbacks of statistical learning: the lack of interpretability of the results. In the past few years, a large amount of research has been focused on methods for interpreting black box models. Having interpretable statistical learning methods is necessary for obtaining a deeper understanding of these models. Specifically in problems in which spatial information is relevant, combining interpretable methods with spatial data can help to provide a better understanding of the problem and an improved interpretation of the results. This paper is focused on the individual conditional expectation plot (ICE-plot), a model-agnostic method for interpreting statistical learning models and combining them with spatial information. An ICE-plot extension is proposed in which spatial information is used as a restriction to define spatial ICE (SpICE) curves. Spatial ICE curves are estimated using real data in the context of an economic problem concerning property valuation in Montevideo, Uruguay. Understanding the key factors that influence property valuation is essential for decision-making, and spatial data play a relevant role in this regard.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of evaluation metrics for classification in imbalanced data 不平衡数据分类评价指标的性能
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-24 DOI: 10.1007/s00180-024-01539-5
Alex de la Cruz Huayanay, Jorge L. Bazán, Cibele M. Russo
{"title":"Performance of evaluation metrics for classification in imbalanced data","authors":"Alex de la Cruz Huayanay, Jorge L. Bazán, Cibele M. Russo","doi":"10.1007/s00180-024-01539-5","DOIUrl":"https://doi.org/10.1007/s00180-024-01539-5","url":null,"abstract":"<p>This paper investigates the effectiveness of various metrics for selecting the adequate model for binary classification when data is imbalanced. Through an extensive simulation study involving 12 commonly used metrics of classification, our findings indicate that the Matthews Correlation Coefficient, G-Mean, and Cohen’s kappa consistently yield favorable performance. Conversely, the area under the curve and Accuracy metrics demonstrate poor performance across all studied scenarios, while other seven metrics exhibit varying degrees of effectiveness in specific scenarios. Furthermore, we discuss a practical application in the financial area, which confirms the robust performance of these metrics in facilitating model selection among alternative link functions.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theory of contrasts for modified Freeman–Tukey statistics and its applications to Tukey’s post-hoc tests for contingency tables 修正弗里曼-图基统计的对比理论及其在或然表图基事后检验中的应用
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-17 DOI: 10.1007/s00180-024-01537-7
Yoshio Takane, Eric J. Beh, Rosaria Lombardo
{"title":"A theory of contrasts for modified Freeman–Tukey statistics and its applications to Tukey’s post-hoc tests for contingency tables","authors":"Yoshio Takane, Eric J. Beh, Rosaria Lombardo","doi":"10.1007/s00180-024-01537-7","DOIUrl":"https://doi.org/10.1007/s00180-024-01537-7","url":null,"abstract":"<p>This paper presents a theory of contrasts designed for modified Freeman–Tukey (FT) statistics which are derived through square-root transformations of observed frequencies (proportions) in contingency tables. Some modifications of the original FT statistic are necessary to allow for ANOVA-like exact decompositions of the global goodness of fit (GOF) measures. The square-root transformations have an important effect of stabilizing (equalizing) variances. The theory is then used to derive Tukey’s post-hoc pairwise comparison tests for contingency tables. Tukey’s tests are more restrictive, but are more powerful, than Scheffè’s post-hoc tests developed earlier for the analysis of contingency tables. Throughout this paper, numerical examples are given to illustrate the theory. Modified FT statistics, like other similar statistics for contingency tables, are based on a large-sample rationale. Small Monte-Carlo studies are conducted to investigate asymptotic (and non-asymptotic) behaviors of the proposed statistics.\u0000</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel nonconvex, smooth-at-origin penalty for statistical learning 用于统计学习的新型非凸、平滑原点罚则
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-07 DOI: 10.1007/s00180-024-01525-x
Majnu John, Sujit Vettam, Yihren Wu
{"title":"A novel nonconvex, smooth-at-origin penalty for statistical learning","authors":"Majnu John, Sujit Vettam, Yihren Wu","doi":"10.1007/s00180-024-01525-x","DOIUrl":"https://doi.org/10.1007/s00180-024-01525-x","url":null,"abstract":"<p>Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantinar: a blockchain peer-to-peer ecosystem for modern data analytics Quantinar:用于现代数据分析的区块链点对点生态系统
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-06 DOI: 10.1007/s00180-024-01529-7
Raul Bag, Bruno Spilak, Julian Winkel, Wolfgang Karl Härdle
{"title":"Quantinar: a blockchain peer-to-peer ecosystem for modern data analytics","authors":"Raul Bag, Bruno Spilak, Julian Winkel, Wolfgang Karl Härdle","doi":"10.1007/s00180-024-01529-7","DOIUrl":"https://doi.org/10.1007/s00180-024-01529-7","url":null,"abstract":"<p>The power of data and correct statistical analysis has never been more prevalent. Academics and practitioners require nowadays an accurate application of quantitative methods. Yet many branches are subject to a crisis of integrity, which is shown in an improper use of statistical models, <i>p</i>-hacking, HARKing, or failure to replicate results. We propose the use of a Peer-to-Peer (P2P) ecosystem based on a blockchain network, Quantinar, to support quantitative analytics knowledge paired with code in the form of Quantlets or software snippets. The integration of blockchain technology allows Quantinar to ensure fully transparent and reproducible scientific research.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BARMPy: Bayesian additive regression models Python package BARMPy:贝叶斯加性回归模型 Python 软件包
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-04 DOI: 10.1007/s00180-024-01535-9
Danielle Van Boxel
{"title":"BARMPy: Bayesian additive regression models Python package","authors":"Danielle Van Boxel","doi":"10.1007/s00180-024-01535-9","DOIUrl":"https://doi.org/10.1007/s00180-024-01535-9","url":null,"abstract":"<p>We make Bayesian additive regression networks (BARN) available as a Python package, <span>barmpy</span>, with documentation at https://dvbuntu.github.io/barmpy/ for general machine learning practitioners. Our object-oriented design is compatible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease learning to use <span>barmpy</span>, we produce a companion tutorial that expands on reference information in the documentation. Any interested user can <span>pip install barmpy</span> from the official PyPi repository. <span>barmpy</span> also serves as a baseline Python library for generic Bayesian additive regression models.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust confidence intervals for meta-regression with interaction effects 具有交互效应的元回归的稳健置信区间
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-08-02 DOI: 10.1007/s00180-024-01530-0
Maria Thurow, Thilo Welz, Eric Knop, Tim Friede, Markus Pauly
{"title":"Robust confidence intervals for meta-regression with interaction effects","authors":"Maria Thurow, Thilo Welz, Eric Knop, Tim Friede, Markus Pauly","doi":"10.1007/s00180-024-01530-0","DOIUrl":"https://doi.org/10.1007/s00180-024-01530-0","url":null,"abstract":"<p>Meta-analysis is an important statistical technique for synthesizing the results of multiple studies regarding the same or closely related research question. So-called meta-regression extends meta-analysis models by accounting for study-level covariates. Mixed-effects meta-regression models provide a powerful tool for evidence synthesis, by appropriately accounting for between-study heterogeneity. In fact, modelling the study effect in terms of random effects and moderators not only allows to examine the impact of the moderators, but often leads to more accurate estimates of the involved parameters. Nevertheless, due to the often small number of studies on a specific research topic, interactions are often neglected in meta-regression. In this work we consider the research questions (i) how moderator interactions influence inference in mixed-effects meta-regression models and (ii) whether some inference methods are more reliable than others. Here we review robust methods for confidence intervals in meta-regression models including interaction effects. These methods are based on the application of robust sandwich estimators of Hartung-Knapp-Sidik-Jonkman (<b>HKSJ</b>) or heteroscedasticity-consistent (<b>HC</b>)-type for estimating the variance-covariance matrix of the vector of model coefficients. Furthermore, we compare different versions of these robust estimators in an extensive simulation study. We thereby investigate coverage and width of seven different confidence intervals under varying conditions. Our simulation study shows that the coverage rates as well as the interval widths of the parameter estimates are only slightly affected by adjustment of the parameters. It also turned out that using the Satterthwaite approximation for the degrees of freedom seems to be advantageous for accurate coverage rates. In addition, different to previous analyses for simpler models, the <span>(textbf{HKSJ})</span>-estimator shows a worse performance in this more complex setting compared to some of the <span>(textbf{HC})</span>-estimators.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordinal causal discovery based on Markov blankets 基于马尔可夫毛毯的序数因果发现
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-07-30 DOI: 10.1007/s00180-024-01513-1
Yu Du, Yi Sun, Luyao Tan
{"title":"Ordinal causal discovery based on Markov blankets","authors":"Yu Du, Yi Sun, Luyao Tan","doi":"10.1007/s00180-024-01513-1","DOIUrl":"https://doi.org/10.1007/s00180-024-01513-1","url":null,"abstract":"<p>This work focuses on learning causal network structures from ordinal categorical data. By combining constraint-based with score-and-search methodologies in structural learning, we propose a hybrid method called Markov Blanket Based Ordinal Causal Discovery (MBOCD) algorithm, which can capture the ordinal relationship of values in ordinal categorical variables. Theoretically, it is proved that for ordinal causal networks, two adjacent DAGs belonging to the same Markov equivalence class are identifiable, which results in the generation of a causal graph. Simulation experiments demonstrate that the proposed algorithm outperforms existing methods in terms of computational efficiency and accuracy. The code of this work is open at: https://github.com/leoydu/MBOCDcode.git.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures 通过变分推理估算多维分级响应模型的 Metropolis-Hastings Robbins-Monro 算法:处理复杂测试结构的高效计算估算方案
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-07-29 DOI: 10.1007/s00180-024-01533-x
Xue Wang, Jing Lu, Jiwei Zhang
{"title":"A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures","authors":"Xue Wang, Jing Lu, Jiwei Zhang","doi":"10.1007/s00180-024-01533-x","DOIUrl":"https://doi.org/10.1007/s00180-024-01533-x","url":null,"abstract":"<p>This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信