通过变分推理估算多维分级响应模型的 Metropolis-Hastings Robbins-Monro 算法:处理复杂测试结构的高效计算估算方案

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Xue Wang, Jing Lu, Jiwei Zhang
{"title":"通过变分推理估算多维分级响应模型的 Metropolis-Hastings Robbins-Monro 算法:处理复杂测试结构的高效计算估算方案","authors":"Xue Wang, Jing Lu, Jiwei Zhang","doi":"10.1007/s00180-024-01533-x","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures\",\"authors\":\"Xue Wang, Jing Lu, Jiwei Zhang\",\"doi\":\"10.1007/s00180-024-01533-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01533-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01533-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 Metropolis-Hastings 变分推理 Robbins-Monro 算法(MHVIRM),它是 Metropolis-Hastings Robbins-Monro 方法(MHRM)的改进版,专为估计复杂多维分级响应模型(MGRM)中的参数而设计。通过整合黑箱变分推理(BBVI)方法,MHVIRM 提高了计算效率和估算精度,尤其适用于具有高维数据和复杂测试结构的模型。该算法通过仿真证明了其有效性,与传统的 MHRM 相比,精度有所提高,尤其是在结构复杂和样本量较小的情况下。此外,MHVIRM 对初始值具有鲁棒性。实际数据集分析进一步说明了该算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures

A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures

This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信