{"title":"通过变分推理估算多维分级响应模型的 Metropolis-Hastings Robbins-Monro 算法:处理复杂测试结构的高效计算估算方案","authors":"Xue Wang, Jing Lu, Jiwei Zhang","doi":"10.1007/s00180-024-01533-x","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"41 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures\",\"authors\":\"Xue Wang, Jing Lu, Jiwei Zhang\",\"doi\":\"10.1007/s00180-024-01533-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01533-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01533-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Metropolis–Hastings Robbins–Monro algorithm via variational inference for estimating the multidimensional graded response model: a calculationally efficient estimation scheme to deal with complex test structures
This paper introduces the Metropolis–Hastings variational inference Robbins–Monro (MHVIRM) algorithm, a modification of the Metropolis–Hastings Robbins–Monro (MHRM) method, designed for estimating parameters in complex multidimensional graded response models (MGRM). By integrating a black-box variational inference (BBVI) approach, MHVIRM enhances computational efficiency and estimation accuracy, particularly for models with high-dimensional data and complex test structures. The algorithms effectiveness is demonstrated through simulations, showing improved precision over traditional MHRM, especially in scenarios with complex structures and small sample sizes. Moreover, MHVIRM is robust to initial values. The applicability is further illustrated with a real dataset analysis.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.