Computational Statistics最新文献

筛选
英文 中文
Analysis of estimating the Bayes rule for Gaussian mixture models with a specified missing-data mechanism 对具有指定缺失数据机制的高斯混合物模型贝叶斯规则的估计分析
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-02-10 DOI: 10.1007/s00180-023-01447-0
{"title":"Analysis of estimating the Bayes rule for Gaussian mixture models with a specified missing-data mechanism","authors":"","doi":"10.1007/s00180-023-01447-0","DOIUrl":"https://doi.org/10.1007/s00180-023-01447-0","url":null,"abstract":"<h3>Abstract</h3> <p>Semi-supervised learning approaches have been successfully applied in a wide range of engineering and scientific fields. This paper investigates the generative model framework with a missingness mechanism for unclassified observations, as introduced by Ahfock and McLachlan (Stat Comput 30:1–12, 2020). We show that in a partially classified sample, a classifier using Bayes’ rule of allocation with a missing-data mechanism can surpass a fully supervised classifier in a two-class normal homoscedastic model, especially with moderate to low overlap and proportion of missing class labels, or with large overlap but few missing labels. It also outperforms a classifier with no missing-data mechanism regardless of the overlap region or the proportion of missing class labels. Our exploration of two- and three-component normal mixture models with unequal covariances through simulations further corroborates our findings. Finally, we illustrate the use of the proposed classifier with a missing-data mechanism on interneuronal and skin lesion datasets.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite mixture of regression models for censored data based on the skew-t distribution 基于 skew-t 分布的删减数据有限混合回归模型
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-02-10 DOI: 10.1007/s00180-024-01459-4
Jiwon Park, Dipak K. Dey, Víctor H. Lachos
{"title":"Finite mixture of regression models for censored data based on the skew-t distribution","authors":"Jiwon Park, Dipak K. Dey, Víctor H. Lachos","doi":"10.1007/s00180-024-01459-4","DOIUrl":"https://doi.org/10.1007/s00180-024-01459-4","url":null,"abstract":"<p>Finite mixture models have been widely used to model and analyze data from heterogeneous populations. In practical scenarios, these types of data often confront upper and/or lower detection limits due to the constraints imposed by experimental apparatuses. Additional complexity arises when measures of each mixture component significantly deviate from the normal distribution, manifesting characteristics such as multimodality, asymmetry, and heavy-tailed behavior, simultaneously. This paper introduces a flexible model tailored for censored data to address these intricacies, leveraging the finite mixture of skew-<i>t</i> distributions. An Expectation Conditional Maximization Either (ECME) algorithm, is developed to efficiently derive parameter estimates by iteratively maximizing the observed data log-likelihood function. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of truncated skew-<i>t</i> distributions. Moreover, a method based on general information principles is presented for approximating the asymptotic covariance matrix of the estimators. Results obtained from the analysis of both simulated and real datasets demonstrate the proposed method’s effectiveness.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simulation model to analyze the behavior of a faculty retirement plan: a case study in Mexico 分析教师退休计划行为的模拟模型:墨西哥案例研究
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-02-09 DOI: 10.1007/s00180-024-01456-7
Marco Antonio Montufar-Benítez, Jaime Mora-Vargas, Carlos Arturo Soto-Campos, Gilberto Pérez-Lechuga, José Raúl Castro-Esparza
{"title":"A simulation model to analyze the behavior of a faculty retirement plan: a case study in Mexico","authors":"Marco Antonio Montufar-Benítez, Jaime Mora-Vargas, Carlos Arturo Soto-Campos, Gilberto Pérez-Lechuga, José Raúl Castro-Esparza","doi":"10.1007/s00180-024-01456-7","DOIUrl":"https://doi.org/10.1007/s00180-024-01456-7","url":null,"abstract":"<p>The main goal in this study was to determine confidence intervals for average age, average seniority, and average money-savings, for faculty members in a university retirement system using a simulation model. The simulation—built-in Arena—considers age, seniority, and the probability of continuing in the institution as the main input random variables in the model. An annual interest rate of 7% and an average annual salary increase of 3% were considered. The scenario simulated consisted of the teacher and the university making contributions, the faculty 5% of his salary, and the university 5% of the teacher’s salary. Since the base salaries with which teachers join to university are variable, we considered a monthly salary of MXN 23 181.2, corresponding to full-time teachers with middle salaries. The results obtained by a simulation of 30 replicates showed that the confidence intervals for the average age at retirement were (55.0, 55.2) years, for the average seniority (22.1, 22.3) years, and for the average savings amount (329 795.2, 341 287.0) MXN. Moreover, the risk that a retiree of 62 years of age and more of 25 years of work, is alive after his savings runs out is approximately 98% and this happens at 64 years of age.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fitting concentric elliptical shapes under general model 一般模型下的同心椭圆形拟合
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-02-09 DOI: 10.1007/s00180-024-01460-x
{"title":"Fitting concentric elliptical shapes under general model","authors":"","doi":"10.1007/s00180-024-01460-x","DOIUrl":"https://doi.org/10.1007/s00180-024-01460-x","url":null,"abstract":"<h3>Abstract</h3> <p>Fitting concentric ellipses is a crucial yet challenging task in image processing, pattern recognition, and astronomy. To address this complexity, researchers have introduced simplified models by imposing geometric assumptions. These assumptions enable the linearization of the model through reparameterization, allowing for the extension of various fitting methods. However, these restrictive assumptions often fail to hold in real-world scenarios, limiting their practical applicability. In this work, we propose two novel estimators that relax these assumptions: the Least Squares method (LS) and the Gradient Algebraic Fit (GRAF). Since these methods are iterative, we provide numerical implementations and strategies for obtaining reliable initial guesses. Moreover, we employ perturbation theory to conduct a first-order analysis, deriving the leading terms of their Mean Squared Errors and their theoretical lower bounds. Our theoretical findings reveal that the GRAF is statistically efficient, while the LS method is not. We further validate our theoretical results and the performance of the proposed estimators through a series of numerical experiments on both real and synthetic data.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring local explanations of nonlinear models using animated linear projections 利用动画线性投影探索非线性模型的局部解释
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-31 DOI: 10.1007/s00180-023-01453-2
Nicholas Spyrison, Dianne Cook, Przemyslaw Biecek
{"title":"Exploring local explanations of nonlinear models using animated linear projections","authors":"Nicholas Spyrison, Dianne Cook, Przemyslaw Biecek","doi":"10.1007/s00180-023-01453-2","DOIUrl":"https://doi.org/10.1007/s00180-023-01453-2","url":null,"abstract":"<p>The increased predictive power of machine learning models comes at the cost of increased complexity and loss of interpretability, particularly in comparison to parametric statistical models. This trade-off has led to the emergence of eXplainable AI (XAI) which provides methods, such as local explanations (LEs) and local variable attributions (LVAs), to shed light on how a model use predictors to arrive at a prediction. These provide a point estimate of the linear variable importance in the vicinity of a single observation. However, LVAs tend not to effectively handle association between predictors. To understand how the interaction between predictors affects the variable importance estimate, we can convert LVAs into linear projections and use the radial tour. This is also useful for learning how a model has made a mistake, or the effect of outliers, or the clustering of observations. The approach is illustrated with examples from categorical (penguin species, chocolate types) and quantitative (soccer/football salaries, house prices) response models. The methods are implemented in the R package cheem, available on CRAN.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric regression modelling of current status competing risks data: a Bayesian approach 现状竞争风险数据的半参数回归建模:一种贝叶斯方法
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-31 DOI: 10.1007/s00180-024-01455-8
Pavithra Hariharan, P. G. Sankaran
{"title":"Semiparametric regression modelling of current status competing risks data: a Bayesian approach","authors":"Pavithra Hariharan, P. G. Sankaran","doi":"10.1007/s00180-024-01455-8","DOIUrl":"https://doi.org/10.1007/s00180-024-01455-8","url":null,"abstract":"<p>The current status censoring takes place in survival analysis when the exact event times are not known, but each individual is monitored once for their survival status. The current status data often arise in medical research, from situations that involve multiple causes of failure. Examining current status competing risks data, commonly encountered in epidemiological studies and clinical trials, is more advantageous with Bayesian methods compared to conventional approaches. They excel in integrating prior knowledge with the observed data and delivering accurate results even with small samples. Inspired by these advantages, the present study is pioneering in introducing a Bayesian framework for both modelling and analysis of current status competing risks data together with covariates. By means of the proportional hazards model, estimation procedures for the regression parameters and cumulative incidence functions are established assuming appropriate prior distributions. The posterior computation is performed using an adaptive Metropolis–Hastings algorithm. Methods for comparing and validating models have been devised. An assessment of the finite sample characteristics of the estimators is conducted through simulation studies. Through the application of this Bayesian approach to prostate cancer clinical trial data, its practical efficacy is demonstrated.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear models with time-varying parameters: a comparison of different approaches 具有时变参数的线性模型:不同方法的比较
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-30 DOI: 10.1007/s00180-023-01452-3
Riccardo Jack Lucchetti, Francesco Valentini
{"title":"Linear models with time-varying parameters: a comparison of different approaches","authors":"Riccardo Jack Lucchetti, Francesco Valentini","doi":"10.1007/s00180-023-01452-3","DOIUrl":"https://doi.org/10.1007/s00180-023-01452-3","url":null,"abstract":"","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140480887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiated uniformization: a new method for inferring Markov chains on combinatorial state spaces including stochastic epidemic models 有区别的统一化:推断组合状态空间(包括随机流行病模型)上马尔可夫链的新方法
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-26 DOI: 10.1007/s00180-024-01454-9
Kevin Rupp, Rudolf Schill, Jonas Süskind, Peter Georg, Maren Klever, Andreas Lösch, Lars Grasedyck, Tilo Wettig, Rainer Spang
{"title":"Differentiated uniformization: a new method for inferring Markov chains on combinatorial state spaces including stochastic epidemic models","authors":"Kevin Rupp, Rudolf Schill, Jonas Süskind, Peter Georg, Maren Klever, Andreas Lösch, Lars Grasedyck, Tilo Wettig, Rainer Spang","doi":"10.1007/s00180-024-01454-9","DOIUrl":"https://doi.org/10.1007/s00180-024-01454-9","url":null,"abstract":"<p>We consider continuous-time Markov chains that describe the stochastic evolution of a dynamical system by a transition-rate matrix <i>Q</i> which depends on a parameter <span>(theta )</span>. Computing the probability distribution over states at time <i>t</i> requires the matrix exponential <span>(exp ,left( tQright) ,)</span>, and inferring <span>(theta )</span> from data requires its derivative <span>(partial exp ,left( tQright) ,/partial theta )</span>. Both are challenging to compute when the state space and hence the size of <i>Q</i> is huge. This can happen when the state space consists of all combinations of the values of several interacting discrete variables. Often it is even impossible to store <i>Q</i>. However, when <i>Q</i> can be written as a sum of tensor products, computing <span>(exp ,left( tQright) ,)</span> becomes feasible by the uniformization method, which does not require explicit storage of <i>Q</i>. Here we provide an analogous algorithm for computing <span>(partial exp ,left( tQright) ,/partial theta )</span>, the <i>differentiated uniformization method</i>. We demonstrate our algorithm for the stochastic SIR model of epidemic spread, for which we show that <i>Q</i> can be written as a sum of tensor products. We estimate monthly infection and recovery rates during the first wave of the COVID-19 pandemic in Austria and quantify their uncertainty in a full Bayesian analysis. Implementation and data are available at https://github.com/spang-lab/TenSIR.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach to nonparametric estimation of multivariate spectral density function using basis expansion 利用基扩展对多元谱密度函数进行非参数估计的新方法
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-20 DOI: 10.1007/s00180-023-01451-4
Shirin Nezampour, Alireza Nematollahi, Robert T. Krafty, Mehdi Maadooliat
{"title":"A new approach to nonparametric estimation of multivariate spectral density function using basis expansion","authors":"Shirin Nezampour, Alireza Nematollahi, Robert T. Krafty, Mehdi Maadooliat","doi":"10.1007/s00180-023-01451-4","DOIUrl":"https://doi.org/10.1007/s00180-023-01451-4","url":null,"abstract":"<p>This paper develops a nonparametric method for estimating the spectral density of multivariate stationary time series using basis expansion. A likelihood-based approach is used to fit the model through the minimization of a penalized Whittle negative log-likelihood. Then, a Newton-type algorithm is developed for the computation. In this method, we smooth the Cholesky factors of the multivariate spectral density matrix in a way that the reconstructed estimate based on the smoothed Cholesky components is consistent and positive-definite. In a simulation study, we have illustrated and compared our proposed method with other competitive approaches. Finally, we apply our approach to two real-world problems, Electroencephalogram signals analysis, <span>(El Nitilde{n}o)</span> Cycle.\u0000</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Censored broken adaptive ridge regression in high-dimension 高维度矢量破碎自适应脊回归
IF 1.3 4区 数学
Computational Statistics Pub Date : 2024-01-17 DOI: 10.1007/s00180-023-01446-1
Jeongjin Lee, Taehwa Choi, Sangbum Choi
{"title":"Censored broken adaptive ridge regression in high-dimension","authors":"Jeongjin Lee, Taehwa Choi, Sangbum Choi","doi":"10.1007/s00180-023-01446-1","DOIUrl":"https://doi.org/10.1007/s00180-023-01446-1","url":null,"abstract":"<p>Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to <span>(L_0)</span> regularization. The BAR regression has many appealing features; it converges to selection with <span>(L_0)</span> penalties as a result of reweighting <span>(L_2)</span> penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139482136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信