用于统计学习的新型非凸、平滑原点罚则

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Majnu John, Sujit Vettam, Yihren Wu
{"title":"用于统计学习的新型非凸、平滑原点罚则","authors":"Majnu John, Sujit Vettam, Yihren Wu","doi":"10.1007/s00180-024-01525-x","DOIUrl":null,"url":null,"abstract":"<p>Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel nonconvex, smooth-at-origin penalty for statistical learning\",\"authors\":\"Majnu John, Sujit Vettam, Yihren Wu\",\"doi\":\"10.1007/s00180-024-01525-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01525-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01525-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高维统计学习算法中,非凸惩罚被用于正则化,主要是因为它们能为模型中的参数提供无偏或接近无偏的估计值。文献中现有的非凸惩罚,如 SCAD、MCP、Laplace 和 arctan,在原点处都有一个奇点,这使它们也适用于变量选择。然而,在深度学习等一些高维框架中,变量选择就不那么重要了。在本文中,我们提出了一种在原点处平滑的非凸罚分。本文包括用新惩罚函数正则化的普通最小二乘估计器的渐近结果,显示了以指数速度消失的渐近偏差。我们还进行了模拟以更好地理解有限样本特性,并在三个数据集上使用深度神经网络架构进行了实证研究,在四个数据集上使用卷积神经网络进行了实证研究。基于人工神经网络的实证研究表明,在七个数据集中,有五个数据集的新正则化方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel nonconvex, smooth-at-origin penalty for statistical learning

A novel nonconvex, smooth-at-origin penalty for statistical learning

Nonconvex penalties are utilized for regularization in high-dimensional statistical learning algorithms primarily because they yield unbiased or nearly unbiased estimators for the parameters in the model. Nonconvex penalties existing in the literature such as SCAD, MCP, Laplace and arctan have a singularity at origin which makes them useful also for variable selection. However, in several high-dimensional frameworks such as deep learning, variable selection is less of a concern. In this paper, we present a nonconvex penalty which is smooth at origin. The paper includes asymptotic results for ordinary least squares estimators regularized with the new penalty function, showing asymptotic bias that vanishes exponentially fast. We also conducted simulations to better understand the finite sample properties and conducted an empirical study employing deep neural network architecture on three datasets and convolutional neural network on four datasets. The empirical study based on artificial neural networks showed better performance for the new regularization approach in five out of the seven datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信