{"title":"Recent Advancement and Novel Application of Natural Polyphenols for the Treatment of Allergy Asthma: From Phytochemistry to Biological Implications.","authors":"Meera Kumari, Mohd Aftab Siddiqui, Amresh Gupta","doi":"10.1615/CritRevImmunol.2023050289","DOIUrl":"10.1615/CritRevImmunol.2023050289","url":null,"abstract":"<p><p>Allergic diseases, primarily IgE-mediated, exert a substantial global health burden. A pivotal role in allergic reactions is played by mast cells, with histamine serving as a central mediator. Within this context, plant-based polyphenols, abundantly present in vegetables and fruits, show promising potential for allergy prevention. These natural compounds, particularly flavonoids, possess anti-inflammatory and anti-allergic properties, influencing dendritic cells, modulating macrophages, and fostering the proliferation of B cells and T cells. The potent anti-allergic effects of flavonoids are attributed to their ability to reduce the production of signaling factors, suppress cytokine production, and regulate signal transduction and gene expression in mast cells, basophils, and T cells. Notably, their benefits extend beyond allergy prevention, as they hold promise in the prevention and treatment of autoimmune illnesses such as diabetes, rheumatoid arthritis, and multiple sclerosis. In the context of allergic reactions and autoimmune diseases, polyphenols exhibit immunomodulatory effects by inhibiting autoimmune T cell proliferation and downregulating pro-inflammatory cytokines. In recent times, flavonoids, being the most prevalent polyphenols in food, have garnered significant attention from researchers due to their potential health advantages. This review compiles the latest scientific research to highlight the impact of flavonoids on allergic illnesses and their potential as a beneficial dietary component.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 4","pages":"29-41"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical Activity Increases Immunity to COVID-19 Infection.","authors":"Kiran Dudhat","doi":"10.1615/CritRevImmunol.2023049460","DOIUrl":"10.1615/CritRevImmunol.2023049460","url":null,"abstract":"<p><p>Coronavirus are truly one of the maximum critical fantastic-stranded non-segmented RNA viruses, named after the approximately 126-nm-diameter envelope around the nucleic acid-protein complicated. The virus causes significant harm to human fitness, including direct injury to the respiratory system, immune system compromise, worsening of the underlying clinical conditions, and eventually systemic failure and death. Exercise affects the immune system's antiviral mechanisms. Modest exercise, done before or after infection, improves morbidity and mortality to the contamination, according to animal investigations using influenza and simplex virus in the respiratory tract. Moreover, preclinical research has demonstrated that overtraining has a negative impact on the body's response to viral infections. Follow-up research has shed some light on the mechanisms underlying these discoveries. Through the activation of muscle protein synthesis, physical activity (PA) and exercise are essential for maintaining muscle mass. On the other hand, a lack of muscle contractile activity throughout the country of no exercise, particularly in elderly people, is a major contributor to anabolic rigidity and muscle atrophy.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 5","pages":"1-10"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets.","authors":"Dorsa Iraji, Bergithe E Oftedal, Anette S B Wolff","doi":"10.1615/CritRevImmunol.2023050360","DOIUrl":"10.1615/CritRevImmunol.2023050360","url":null,"abstract":"<p><p>T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 5","pages":"25-52"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Similarities and Differences between Osteoclast-mediated Functional Activation of NK, CD3+ T, and γδ T Cells from Humans, Humanized- BLT mice and WT mice","authors":"Kawaljit Kaur, Anahid Jewett","doi":"10.1615/critrevimmunol.2023051091","DOIUrl":"https://doi.org/10.1615/critrevimmunol.2023051091","url":null,"abstract":"This study is focused on assessing the activation in NK, CD3+ T, and γδ T cells when they interact with osteoclasts (OCs) and monocytes in the presence or absence of zoledronate (ZOL), both in humans and WT mice. OCs resulted in increased IFN-γ secretion in NK, CD3+ T, and γδ T cells, however, the significantly highest increase was seen when cells were co-cultured with ZOL-treated OCs. Our previous studies have demonstrated increased IFN-γ secretion in the peripheral blood-derived immune cells of bisphosphonate-related osteonecrosis of the jaw (BRONJ) mice model. This could be due to increased OCs-induced activation of immune cells with ZOL treatment. We also observed increased IFN-γ secretion in humanized-BLT (hu-BLT) mice NK cells when were co-cultured with OCs or monocytes, and higher IFN-γ secretion levels were seen in the presence of OCs or ZOL-treated OCs. In addition, similar effects on IFN-γ secretion levels of NK, CD3+ T, and γδ T cells were seen whether cells were co-cultured with allogeneic OCs or autologous OCs.","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"104-B 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135710175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silencing of FUN14 domain containing 1 inhibits platelet activation in diabetes mellitus through blocking mitophagy","authors":"Qiang Wu, Siwen Yu, Kangkang Peng","doi":"10.1615/critrevimmunol.2023050364","DOIUrl":"https://doi.org/10.1615/critrevimmunol.2023050364","url":null,"abstract":"Objectives: Platelet hyperactivity is an adverse physiological event in diabetes mellitus (DM). This study aimed to explore the function of FUN14 domain containing 1 (FUNDC1) on the platelet activation in DM and reveal relevant mechanisms involving mitophagy. Methods: A mouse model of DM was established by high fat feeding and streptozotocin injection. Platelets that separated from whole blood were incubated with FCCP to induce mitophagy. Relative mRNA expression of FUNDC1 was detected by qRT-PCR. The protein expression of FUNDC1, LC3-II/LC3-I, FUNDC1 (two mitophagy marker), and cleaved caspase-3 (a pro-apoptotic factor) were measured by western blot. Immunofluorescence and flow cytometry were performed to detect LC3-positive mitochondria and CD62P (a platelet activating factor), respectively. Besides, the serum levels of β-TG and PF4 (two platelet specific proteins) were measured by enzyme linked immunosorbent assay. Results: FUNDC1 is up-regulated in DM mice, and its silencing decreased the body weight and fasting blood glucose. Silencing of FUNDC1 also significantly weakened the effects of FCCP on inducing platelet mitophagy, evidenced by the down-regulation of LC3-II/LC3-I, up-regulation of Tomm20, and a decrease in LC3-positive mitochondria. In addition, the platelets were activated in DM mice. Silencing of FUNDC1 weakened platelet hyperactivity in DM, evidenced by the down-regulation of cleaved caspase-3 and CD62P, and the decrease in β-TG and PF4 levels. Conclusions: Silencing of FUNDC1 inhibits platelet hyperactivity in DM through blocking mitophagy. FUNDC1-midiated mitophagy may be a promising target for the treatment of DM and related cardiovascul","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135319415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plausible Role of NLRP3 Inflammasome and Associated Cytokines in Pathogenesis of Rheumatic Heart Disease.","authors":"Aishwarya Rani, Devinder Toor","doi":"10.1615/CritRevImmunol.2023049463","DOIUrl":"10.1615/CritRevImmunol.2023049463","url":null,"abstract":"<p><p>Rheumatic heart disease (RHD) is a post-streptococcal sequela caused by Streptococcus pyogenes. The global burden of disease is high among people with low socio-economic status, with significant cases emerging every year despite global eradication efforts. The current treatment includes antibiotic therapies to target strep throat and rheumatic fever and valve replacement strategies as a corrective measure for chronic RHD patients. Valvular damage and valve calcification are considered to be the end-stage processes of the disease resulting from impairment of the endothelial arrangement due to immune infiltration. This immune infiltration is mediated by a cascade of events involving NLRP3 inflammasome activation. NLRP3 inflammasome is activated by wide range of stimuli including bacterial cell wall components like M proteins and leukocidal toxins like nicotinamide dehydrogenase (NADase) and streptolysin O (SLO) and these play a major role in sustaining the virulence of Streptococcus pyogenes and progression of RHD. In this review, we are discussing NLRP3 inflammasome and its plausible role in the pathogenesis of RHD by exploiting the host-pathogen interaction mainly focusing on the NLRP3 inflammasome-mediated cytokines IL-1β and IL-18. Different therapeutic approaches involving NLRP3 inflammasome inactivation, caspase-1 inhibition, and blockade of IL-1β and IL-18 are discussed in this review and may be promising for treating RHD patients.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 3","pages":"1-14"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuemei Liu, Hong Chen, Xiaobo Chen, Peng Wu, Jianhua Zhang
{"title":"Identification of Potential Targets and Mechanisms of Sinomenine in Allergic Rhinitis Treatment Based on Network Pharmacology and Molecular Docking.","authors":"Xuemei Liu, Hong Chen, Xiaobo Chen, Peng Wu, Jianhua Zhang","doi":"10.1615/CritRevImmunol.2023049479","DOIUrl":"10.1615/CritRevImmunol.2023049479","url":null,"abstract":"<p><p>This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 4","pages":"1-10"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KIAA1429 Promotes Nasopharyngeal Carcinoma Progression by Mediating m6A Modification of PTGS2.","authors":"Lingling Wu, Yuanhong Zhou, Jun Fu","doi":"10.1615/CritRevImmunol.2023050249","DOIUrl":"10.1615/CritRevImmunol.2023050249","url":null,"abstract":"<p><p>Emerging evidence suggests that dysregulation of a N6-methyladenosine (m6A) methyltransferase KIAA1429 participates in the pathogenesis of multiple cancers except for nasopharyngeal carcinoma (NPC). This study is aimed to explore the function of KIAA1429 in NPC progression. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to confirm the mRNA expression in NPC by bioinformatic analysis. The levels of KIAA1429 and PTGS2 was detected by quantitative reverse transcription polymerase chain reaction and Western blotting. To investigate the effects of KIAA1429/PTGS2 knockdown or overexpression vectors on NPC cell malignancy, cell and animal experiments were performed. Finally, MeRIP and mRNA stability assays were used to verify the m6A modification and mRNA stability, respectively. KIAA1429 was upregulated in NPC tissues and cells. After transfecting KIAA1429 knockdown or overexpression vectors in NPC cells, we proved that KIAA1429 overexpression promoted proliferation, migration, invasion, and tumor growth, whereas KIAA1429 knockdown showed the opposite effect. Our results also indicated that KIAA1429 mediated m6A modification of PTGS2, enhancing PTGS2 mRNA stability in NPC cells. In addition, PTGS2 could also regulate the effects of KIAA1429 on NPC cell malignancy. This study confirmed the oncogenic function of KIAA1429 in NPC through m6A-modification of PTGS2, suggesting that targeting KIAA1429-mediated m6A modification of PTGS2 might provide a new therapeutic strategy for NPC.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 4","pages":"15-27"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"m6A Writer METTL3-Mediated lncRNA LINC01125 Prevents the Malignancy of Papillary Thyroid Cancer.","authors":"Tianyou He, Hailiang Xia, Baojie Chen, Ziqi Duan, Chaogang Huang","doi":"10.1615/CritRevImmunol.2023050267","DOIUrl":"10.1615/CritRevImmunol.2023050267","url":null,"abstract":"<p><strong>Background: </strong>Long non-coding RNA (lncRNA) LINC01125 is an anti-tumor factor in a variety of tumors, and regulates cancer cell function. However, its function and mechanism of N6-methyladenosine (m6A) modification in papillary thyroid cancer (PTC) tumorigenesis remain unclear.</p><p><strong>Aims: </strong>This study aimed to reveal the function and m6A modification of LINC01125 in PTC tumorigenesis.</p><p><strong>Methods: </strong>The LINC01125 and methyltransferase-like 3 (METTL3) levels in PTC cells and tissues was assessed by qRT-PCR. The binding relationship among LINC01125 and METTL3 was determined by MeRIP, Pearson, bioinformatics, and RNA stabilization analysis. Transwell assays were performed to confirm the changes of PTC cell migration and invasion. Cell proliferation was revealed by CCK-8 as well as colony formation assays.</p><p><strong>Results: </strong>Low expression of LINC01125 and METTL3 was identified in PTC. LINC01125 was a downstream target of METTL3-mediated m6A modification and was stably upregulated via METTL3. Cell invasion, migration, viability, and colony formation levels were decreased when LINC01125 or METTL3 was upregulated. Inhibition of LINC01125 had the opposite impact, promoting cell proliferation and metastasis, and reversing METTL3 overexpression-resulted cell malignancy suppression.</p><p><strong>Conclusions: </strong>Overall, this study proved that the m6A modification of LINC01125 was mediated by METTL3 and LINC01125 inhibited cell invasion, migration and proliferation, thereby suppressing the development of PTC. This points to the LINC01125-m6A-METTL3 axis as a possible prospective target for future treatment of PTC.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"43 3","pages":"43-53"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dipnarine Maharaj, Kawaljit Kaur, Adrian Saltese, Jacqueline Gouvea
{"title":"Personalized Precision Immunotherapy for Amyotrophic Lateral Sclerosis (ALS).","authors":"Dipnarine Maharaj, Kawaljit Kaur, Adrian Saltese, Jacqueline Gouvea","doi":"10.1615/CritRevImmunol.2023048372","DOIUrl":"10.1615/CritRevImmunol.2023048372","url":null,"abstract":"<p><p>Neurological syndrome amyotrophic lateral sclerosis (ALS) affects motor neurons and is characterized by progressive motor neuron loss in the brain and spinal cord. ALS starts with mainly focal onset but when the disease progresses, it spreads to different parts of the body, with survival limits of 2-5 years after disease initiation. To date, only supportive care is provided for ALS patients, and no effective treatment or cure has been discovered. This review is focused on clinical and immunological aspects of ALS patients, based on our case studies, and we discuss the treatment we have provided to those patients based on a detailed evaluation of their peripheral blood immune cells and blood-derived serum secreted factors, cytokines, chemokines and growth factors. We show that using a personalized approach of low dose immunotherapy there is an improvement in the effects on inflammation and immunological dysfunction.</p>","PeriodicalId":55205,"journal":{"name":"Critical Reviews in Immunology","volume":"1 1","pages":"1-11"},"PeriodicalIF":1.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67425659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}