Lucio F. M. Mota, Diana Giannuzzi, Sara Pegolo, Enrico Sturaro, Daniel Gianola, Riccardo Negrini, Erminio Trevisi, Paolo Ajmone Marsan, Alessio Cecchinato
{"title":"Genomic prediction of blood biomarkers of metabolic disorders in Holstein cattle using parametric and nonparametric models","authors":"Lucio F. M. Mota, Diana Giannuzzi, Sara Pegolo, Enrico Sturaro, Daniel Gianola, Riccardo Negrini, Erminio Trevisi, Paolo Ajmone Marsan, Alessio Cecchinato","doi":"10.1186/s12711-024-00903-9","DOIUrl":"https://doi.org/10.1186/s12711-024-00903-9","url":null,"abstract":"Metabolic disturbances adversely impact productive and reproductive performance of dairy cattle due to changes in endocrine status and immune function, which increase the risk of disease. This may occur in the post-partum phase, but also throughout lactation, with sub-clinical symptoms. Recently, increased attention has been directed towards improved health and resilience in dairy cattle, and genomic selection (GS) could be a helpful tool for selecting animals that are more resilient to metabolic disturbances throughout lactation. Hence, we evaluated the genomic prediction of serum biomarkers levels for metabolic distress in 1353 Holsteins genotyped with the 100K single nucleotide polymorphism (SNP) chip assay. The GS was evaluated using parametric models best linear unbiased prediction (GBLUP), Bayesian B (BayesB), elastic net (ENET), and nonparametric models, gradient boosting machine (GBM) and stacking ensemble (Stack), which combines ENET and GBM approaches. The results show that the Stack approach outperformed other methods with a relative difference (RD), calculated as an increment in prediction accuracy, of approximately 18.0% compared to GBLUP, 12.6% compared to BayesB, 8.7% compared to ENET, and 4.4% compared to GBM. The highest RD in prediction accuracy between other models with respect to GBLUP was observed for haptoglobin (hapto) from 17.7% for BayesB to 41.2% for Stack; for Zn from 9.8% (BayesB) to 29.3% (Stack); for ceruloplasmin (CuCp) from 9.3% (BayesB) to 27.9% (Stack); for ferric reducing antioxidant power (FRAP) from 8.0% (BayesB) to 40.0% (Stack); and for total protein (PROTt) from 5.7% (BayesB) to 22.9% (Stack). Using a subset of top SNPs (1.5k) selected from the GBM approach improved the accuracy for GBLUP from 1.8 to 76.5%. However, for the other models reductions in prediction accuracy of 4.8% for ENET (average of 10 traits), 5.9% for GBM (average of 21 traits), and 6.6% for Stack (average of 16 traits) were observed. Our results indicate that the Stack approach was more accurate in predicting metabolic disturbances than GBLUP, BayesB, ENET, and GBM and seemed to be competitive for predicting complex phenotypes with various degrees of mode of inheritance, i.e. additive and non-additive effects. Selecting markers based on GBM improved accuracy of GBLUP.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tristan Kistler, Evert W. Brascamp, Benjamin Basso, Piter Bijma, Florence Phocas
{"title":"Uncertainty in the mating strategy of honeybees causes bias and unreliability in the estimates of genetic parameters","authors":"Tristan Kistler, Evert W. Brascamp, Benjamin Basso, Piter Bijma, Florence Phocas","doi":"10.1186/s12711-024-00898-3","DOIUrl":"https://doi.org/10.1186/s12711-024-00898-3","url":null,"abstract":"Breeding queens may be mated with drones that are produced by a single drone-producing queen (DPQ), or a group of sister-DPQs, but often only the dam of the DPQ(s) is reported in the pedigree. Furthermore, datasets may include colony phenotypes from DPQs that were open-mated at different locations, and thus to a heterogeneous drone population. Simulation was used to investigate the impact of the mating strategy and its modelling on the estimates of genetic parameters and genetic trends when the DPQs are treated in different ways in the statistical evaluation model. We quantified the bias and standard error of the estimates when breeding queens were mated to one DPQ or a group of DPQs, assuming that this information was known or not. We also investigated four alternative strategies to accommodate the phenotypes of open-mated DPQs in the genetic evaluation: excluding their phenotypes, adding a dummy pseudo-sire in the pedigree, or adding a non-genetic (fixed or random) effect to the statistical evaluation model to account for the origin of the mates. The most precise estimates of genetic parameters and genetic trends were obtained when breeding queens were mated with drones of single DPQs that are correctly assigned in the pedigree. However, when they were mated with drones from one or a group of DPQs, and this information was not known, erroneous assumptions led to considerable bias in these estimates. Furthermore, genetic variances were considerably overestimated when phenotypes of colonies from open-mated DPQs were adjusted for their mates by adding a dummy pseudo-sire in the pedigree for each subpopulation of open-mating drones. On the contrary, correcting for the heterogeneous drone population by adding a non-genetic effect in the evaluation model produced unbiased estimates. Knowing only the dam of the DPQ(s) used in each mating may lead to erroneous assumptions on how DPQs were used and severely bias the estimates of genetic parameters and trends. Thus, we recommend keeping track of DPQs in the pedigree, and not only of the dams of DPQ(s). Records from DPQ colonies with queens open-mated to a heterogeneous drone population can be integrated by adding non-genetic effects to the statistical evaluation model.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140604070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary Kate Hollifield, Ching-Yi Chen, Eric Psota, Justin Holl, Daniela Lourenco, Ignacy Misztal
{"title":"Estimating genetic parameters of digital behavior traits and their relationship with production traits in purebred pigs","authors":"Mary Kate Hollifield, Ching-Yi Chen, Eric Psota, Justin Holl, Daniela Lourenco, Ignacy Misztal","doi":"10.1186/s12711-024-00902-w","DOIUrl":"https://doi.org/10.1186/s12711-024-00902-w","url":null,"abstract":"With the introduction of digital phenotyping and high-throughput data, traits that were previously difficult or impossible to measure directly have become easily accessible, offering the opportunity to enhance the efficiency and rate of genetic gain in animal production. It is of interest to assess how behavioral traits are indirectly related to the production traits during the performance testing period. The aim of this study was to assess the quality of behavior data extracted from day-wise video recordings and estimate the genetic parameters of behavior traits and their phenotypic and genetic correlations with production traits in pigs. Behavior was recorded for 70 days after on-test at about 10 weeks of age and ended at off-test for 2008 female purebred pigs, totaling 119,812 day-wise records. Behavior traits included time spent eating, drinking, laterally lying, sternally lying, sitting, standing, and meters of distance traveled. A quality control procedure was created for algorithm training and adjustment, standardizing recording hours, removing culled animals, and filtering unrealistic records. Production traits included average daily gain (ADG), back fat thickness (BF), and loin depth (LD). Single-trait linear models were used to estimate heritabilities of the behavior traits and two-trait linear models were used to estimate genetic correlations between behavior and production traits. The results indicated that all behavior traits are heritable, with heritability estimates ranging from 0.19 to 0.57, and showed low-to-moderate phenotypic and genetic correlations with production traits. Two-trait linear models were also used to compare traits at different intervals of the recording period. To analyze the redundancies in behavior data during the recording period, the averages of various recording time intervals for the behavior and production traits were compared. Overall, the average of the 55- to 68-day recording interval had the strongest phenotypic and genetic correlation estimates with the production traits. Digital phenotyping is a new and low-cost method to record behavior phenotypes, but thorough data cleaning procedures are needed. Evaluating behavioral traits at different time intervals offers a deeper insight into their changes throughout the growth periods and their relationship with production traits, which may be recorded at a less frequent basis.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Wang, Choulin Chen, Bowen Lei, Shenghua Qin, Yuanyuan Zhang, Kui Li, Song Zhang, Yuwen Liu
{"title":"Constructing eRNA-mediated gene regulatory networks to explore the genetic basis of muscle and fat-relevant traits in pigs","authors":"Chao Wang, Choulin Chen, Bowen Lei, Shenghua Qin, Yuanyuan Zhang, Kui Li, Song Zhang, Yuwen Liu","doi":"10.1186/s12711-024-00897-4","DOIUrl":"https://doi.org/10.1186/s12711-024-00897-4","url":null,"abstract":"Enhancer RNAs (eRNAs) play a crucial role in transcriptional regulation. While significant progress has been made in understanding epigenetic regulation mediated by eRNAs, research on the construction of eRNA-mediated gene regulatory networks (eGRN) and the identification of critical network components that influence complex traits is lacking. Here, employing the pig as a model, we conducted a comprehensive study using H3K27ac histone ChIP-seq and RNA-seq data to construct eRNA expression profiles from multiple tissues of two distinct pig breeds, namely Enshi Black (ES) and Duroc. In addition to revealing the regulatory landscape of eRNAs at the tissue level, we developed an innovative network construction and refinement method by integrating RNA-seq, ChIP-seq, genome-wide association study (GWAS) signals and enhancer-modulating effects of single nucleotide polymorphisms (SNPs) measured by self-transcribing active regulatory region sequencing (STARR-seq) experiments. Using this approach, we unraveled eGRN that significantly influence the growth and development of muscle and fat tissues, and identified several novel genes that affect adipocyte differentiation in a cell line model. Our work not only provides novel insights into the genetic basis of economic pig traits, but also offers a generalizable approach to elucidate the eRNA-mediated transcriptional regulation underlying a wide spectrum of complex traits for diverse organisms.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helen Schneider, Valentin Haas, Ana-Marija Krizanac, Clemens Falker-Gieske, Johannes Heise, Jens Tetens, Georg Thaller, Jörn Bennewitz
{"title":"Mendelian randomization analysis of 34,497 German Holstein cows to infer causal associations between milk production and health traits","authors":"Helen Schneider, Valentin Haas, Ana-Marija Krizanac, Clemens Falker-Gieske, Johannes Heise, Jens Tetens, Georg Thaller, Jörn Bennewitz","doi":"10.1186/s12711-024-00896-5","DOIUrl":"https://doi.org/10.1186/s12711-024-00896-5","url":null,"abstract":"Claw diseases and mastitis represent the most important health issues in dairy cattle with a frequently mentioned connection to milk production. Although many studies have aimed at investigating this connection in more detail by estimating genetic correlations, they do not provide information about causality. An alternative is to carry out Mendelian randomization (MR) studies using genetic variants to investigate the effect of an exposure on an outcome trait mediated by genetic variants. No study has yet investigated the causal association of milk yield (MY) with health traits in dairy cattle. Hence, we performed a MR analysis of MY and seven health traits using imputed whole-genome sequence data from 34,497 German Holstein cows. We applied a method that uses summary statistics and removes horizontal pleiotropic variants (having an effect on both traits), which improves the power and unbiasedness of MR studies. In addition, genetic correlations between MY and each health trait were estimated to compare them with the estimates of causal effects that we expected. All genetic correlations between MY and each health trait were negative, ranging from − 0.303 (mastitis) to − 0.019 (digital dermatitis), which indicates a reduced health status as MY increases. The only non-significant correlation was between MY and digital dermatitis. In addition, each causal association was negative, ranging from − 0.131 (mastitis) to − 0.034 (laminitis), but the number of significant associations was reduced to five nominal and two experiment-wide significant results. The latter were between MY and mastitis and between MY and digital phlegmon. Horizontal pleiotropic variants were identified for mastitis, digital dermatitis and digital phlegmon. They were located within or nearby variants that were previously reported to have a horizontal pleiotropic effect, e.g., on milk production and somatic cell count. Our results confirm the known negative genetic connection between health traits and MY in dairy cattle. In addition, they provide new information about causality, which for example points to the negative energy balance mediating the connection between these traits. This knowledge helps to better understand whether the negative genetic correlation is based on pleiotropy, linkage between causal variants for both trait complexes, or indeed on a causal association.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iliyass Biada, Noelia Ibáñez-Escriche, Agustín Blasco, Cristina Casto-Rebollo, Maria A. Santacreu
{"title":"Microbiome composition as a potential predictor of longevity in rabbits","authors":"Iliyass Biada, Noelia Ibáñez-Escriche, Agustín Blasco, Cristina Casto-Rebollo, Maria A. Santacreu","doi":"10.1186/s12711-024-00895-6","DOIUrl":"https://doi.org/10.1186/s12711-024-00895-6","url":null,"abstract":"Longevity and resilience are two fundamental traits for more sustainable livestock production. These traits are closely related, as resilient animals tend to have longer lifespans. An interesting criterion for increasing longevity in rabbit could be based on the information provided by its gut microbiome. The gut microbiome is essential for regulating health and plays crucial roles in the development of the immune system. The aim of this research was to investigate if animals with different longevities have different microbial profiles. We sequenced the 16S rRNA gene from soft faeces from 95 does. First, we compared two maternal rabbit lines with different longevities; a standard longevity maternal line (A) and a maternal line (LP) that was founded based on longevity criteria: females with a minimum of 25 parities with an average prolificacy per parity of 9 or more. Second, we compared the gut microbiota of two groups of animals from line LP with different longevities: females that died/were culled with two parities or less (LLP) and females with more than 15 parities (HLP). Differences in alpha and beta diversity were observed between lines A and LP, and a partial least square discriminant analysis (PLS-DA) showed a high prediction accuracy (> 91%) of classification of animals to line A versus LP (146 amplicon sequence variants (ASV)). The PLS-DA also showed a high prediction accuracy (> 94%) to classify animals to the LLP and HLP groups (53 ASV). Interestingly, some of the most important taxa identified in the PLS-DA were common to both comparisons (Akkermansia, Christensenellaceae R-7, Uncultured Eubacteriaceae, among others) and have been reported to be related to resilience and longevity. Our results indicate that the first parity gut microbiome profile differs between the two rabbit maternal lines (A and LP) and, to a lesser extent, between animals of line LP with different longevities (LLP and HLP). Several genera were able to discriminate animals from the two lines and animals with different longevities, which shows that the gut microbiome could be used as a predictive factor for longevity, or as a selection criterion for these traits.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruifei Yang, Siqi Jin, Suyun Fang, Dawei Yan, Hao Zhang, Jingru Nie, Jinqiao Liu, Minjuan Lv, Bo Zhang, Xinxing Dong
{"title":"Genetic introgression from commercial European pigs to the indigenous Chinese Lijiang breed and associated changes in phenotypes","authors":"Ruifei Yang, Siqi Jin, Suyun Fang, Dawei Yan, Hao Zhang, Jingru Nie, Jinqiao Liu, Minjuan Lv, Bo Zhang, Xinxing Dong","doi":"10.1186/s12711-024-00893-8","DOIUrl":"https://doi.org/10.1186/s12711-024-00893-8","url":null,"abstract":"Gene flow is crucial for enhancing economic traits of livestock. In China, breeders have used hybridization strategies for decades to improve livestock performance. Here, we performed whole-genome sequencing of a native Chinese Lijiang pig (LJP) breed. By integrating previously published data, we explored the genetic structure and introgression of genetic components from commercial European pigs (EP) into the LJP, and examined the impact of this introgression on phenotypic traits. Our analysis revealed significant introgression of EP breeds into the LJP and other domestic pig breeds in China. Using a haplotype-based approach, we quantified introgression levels and compared EP to LJP and other Chinese domestic pigs. The results show that EP introgression is widely prevalent in Chinese domestic pigs, although there are significant differences between breeds. We propose that LJP could potentially act as a mediator for the transmission of EP haplotypes. We also examined the correlation between EP introgression and the number of thoracic vertebrae in LJP and identified VRTN and STUM as candidate genes for this trait. Our study provides evidence of introgressed European haplotypes in the LJP breed and describes the potential role of EP introgression on phenotypic changes of this indigenous breed.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meilin Jin, Huihua Wang, Gang Liu, Jian Lu, Zehu Yuan, Taotao Li, Engming Liu, Zengkui Lu, Lixin Du, Caihong Wei
{"title":"Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation","authors":"Meilin Jin, Huihua Wang, Gang Liu, Jian Lu, Zehu Yuan, Taotao Li, Engming Liu, Zengkui Lu, Lixin Du, Caihong Wei","doi":"10.1186/s12711-024-00880-z","DOIUrl":"https://doi.org/10.1186/s12711-024-00880-z","url":null,"abstract":"Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurélie Vinet, Sophie Mattalia, Roxane Vallée, Christine Bertrand, Anne Barbat, Julie Promp, Beatriz C. D. Cuyabano, Didier Boichard
{"title":"Effect of temperature-humidity index on the evolution of trade-offs between fertility and production in dairy cattle","authors":"Aurélie Vinet, Sophie Mattalia, Roxane Vallée, Christine Bertrand, Anne Barbat, Julie Promp, Beatriz C. D. Cuyabano, Didier Boichard","doi":"10.1186/s12711-024-00889-4","DOIUrl":"https://doi.org/10.1186/s12711-024-00889-4","url":null,"abstract":"In the current context of climate change, livestock production faces many challenges to improve the sustainability of systems. Dairy farming, in particular, must find ways to select animals that will be able to achieve sufficient overall production while maintaining their reproductive ability in environments with increasing temperatures. With future forecasted climate conditions in mind, this study used data from Holstein and Montbeliarde dairy cattle to: (1) estimate the genetic-by-temperature-humidity index (THI) interactions for female fertility, and (2) evaluate the production-fertility trade-off with increasing values of THI. Two-trait random regression models were fitted for conception rate (fertility) and test-day protein yield (production). For fertility, genetic correlations between different THI values were generally above 0.75, suggesting weak genotype-by-THI interactions for conception rate in both breeds. However, the genetic correlations between the conception rate breeding values at the current average THI (THI = 50, corresponding to a 24-h average temperature of 8 °C at 50% relative humidity) and their slopes (i.e., potential reranking) for heat stress scenarios (THI > 70), were different for each breed. For Montbeliarde, this correlation tended to be positive (i.e., overall the best reproducers are less affected by heat stress), whereas for Holstein it was approximately zero. Finally, our results indicated a weak antagonism between production and fertility, although for Montbeliarde this antagonism intensified with increasing THI. Within the range of weather conditions studied, increasing temperatures are not expected to exacerbate the fertility-production trade-off. However, our results indicated that the animals with the best breeding values for production today will be the most affected by temperature increases, both in terms of fertility and production. Nonetheless, these animals should remain among the most productive ones during heat waves. For Montbeliarde, the current selection program for fertility seems to be adequate for ensuring the adaptation of fertility traits to temperature increases, without adverse effects on production. Such a conclusion cannot be drawn for Holstein. In the future, the incorporation of a heat tolerance index into dairy cattle breeding programs would be valuable to promote the selection of animals adapted to future climate conditions.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas J. Lopdell, Alexander J. Trevarton, Janelle Moody, Claire Prowse-Wilkins, Sarah Knowles, Kathryn Tiplady, Amanda J. Chamberlain, Michael E. Goddard, Richard J. Spelman, Klaus Lehnert, Russell G. Snell, Stephen R. Davis, Mathew D. Littlejohn
{"title":"A common regulatory haplotype doubles lactoferrin concentration in milk","authors":"Thomas J. Lopdell, Alexander J. Trevarton, Janelle Moody, Claire Prowse-Wilkins, Sarah Knowles, Kathryn Tiplady, Amanda J. Chamberlain, Michael E. Goddard, Richard J. Spelman, Klaus Lehnert, Russell G. Snell, Stephen R. Davis, Mathew D. Littlejohn","doi":"10.1186/s12711-024-00890-x","DOIUrl":"https://doi.org/10.1186/s12711-024-00890-x","url":null,"abstract":"Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}