High performance imputation of structural and single nucleotide variants using low-coverage whole genome sequencing

IF 3.6 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Manu Kumar Gundappa, Diego Robledo, Alastair Hamilton, Ross D. Houston, James G. D. Prendergast, Daniel J. Macqueen
{"title":"High performance imputation of structural and single nucleotide variants using low-coverage whole genome sequencing","authors":"Manu Kumar Gundappa, Diego Robledo, Alastair Hamilton, Ross D. Houston, James G. D. Prendergast, Daniel J. Macqueen","doi":"10.1186/s12711-025-00962-6","DOIUrl":null,"url":null,"abstract":"Whole genome sequencing (WGS), despite its advantages, is yet to replace methods for genotyping single nucleotide variants (SNVs) such as SNP arrays and targeted genotyping assays. Structural variants (SVs) have larger effects on traits than SNVs, but are more challenging to accurately genotype. Using low-coverage WGS with genotype imputation offers a cost-effective strategy to achieve genome-wide variant coverage, but is yet to be tested for SVs. Here, we investigate combined SNV and SV imputation with low-coverage WGS data in Atlantic salmon (Salmo salar). As the reference panel, we used genotypes for high-confidence SVs and SNVs for n = 365 wild individuals sampled from diverse populations. We also generated 15 × WGS data (n = 20 samples) for a commercial population external to the reference panel, and called SVs and SNVs with gold-standard approaches. An imputation method selected for its established performance using low-coverage sequencing data (GLIMPSE) was tested at WGS depths of 1 × , 2 × , 3 × , and 4 × for samples within and external to the reference panel. SNVs were imputed with high accuracy and recall across all WGS depths, including for samples out-with the reference panel. For SVs, we compared imputation based purely on linkage disequilibrium (LD) with SNVs, to that supplemented with SV genotype likelihoods (GLs) from low-coverage WGS. Including SV GLs increased imputation accuracy, but as a trade-off with recall, requiring 3–4 × depth for best performance. Combining strategies allowed us to capture 84% of the reference panel deletions with 87% accuracy at 1 × depth. We also show that SV length affects imputation performance, with provision of SV GLs greatly enhancing accuracy for the longest SVs in the dataset. This study highlights the promise of reference panel imputation using low-coverage WGS, including novel opportunities to enhance the resolution of genome-wide association studies by capturing SVs.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00962-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Whole genome sequencing (WGS), despite its advantages, is yet to replace methods for genotyping single nucleotide variants (SNVs) such as SNP arrays and targeted genotyping assays. Structural variants (SVs) have larger effects on traits than SNVs, but are more challenging to accurately genotype. Using low-coverage WGS with genotype imputation offers a cost-effective strategy to achieve genome-wide variant coverage, but is yet to be tested for SVs. Here, we investigate combined SNV and SV imputation with low-coverage WGS data in Atlantic salmon (Salmo salar). As the reference panel, we used genotypes for high-confidence SVs and SNVs for n = 365 wild individuals sampled from diverse populations. We also generated 15 × WGS data (n = 20 samples) for a commercial population external to the reference panel, and called SVs and SNVs with gold-standard approaches. An imputation method selected for its established performance using low-coverage sequencing data (GLIMPSE) was tested at WGS depths of 1 × , 2 × , 3 × , and 4 × for samples within and external to the reference panel. SNVs were imputed with high accuracy and recall across all WGS depths, including for samples out-with the reference panel. For SVs, we compared imputation based purely on linkage disequilibrium (LD) with SNVs, to that supplemented with SV genotype likelihoods (GLs) from low-coverage WGS. Including SV GLs increased imputation accuracy, but as a trade-off with recall, requiring 3–4 × depth for best performance. Combining strategies allowed us to capture 84% of the reference panel deletions with 87% accuracy at 1 × depth. We also show that SV length affects imputation performance, with provision of SV GLs greatly enhancing accuracy for the longest SVs in the dataset. This study highlights the promise of reference panel imputation using low-coverage WGS, including novel opportunities to enhance the resolution of genome-wide association studies by capturing SVs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics Selection Evolution
Genetics Selection Evolution 生物-奶制品与动物科学
CiteScore
6.50
自引率
9.80%
发文量
74
审稿时长
1 months
期刊介绍: Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信