Afees A. Ajasa, Hans M. Gjøen, Solomon A. Boison, Marie Lillehammer
{"title":"Genome-wide association analysis using multiple Atlantic salmon populations","authors":"Afees A. Ajasa, Hans M. Gjøen, Solomon A. Boison, Marie Lillehammer","doi":"10.1186/s12711-025-00959-1","DOIUrl":null,"url":null,"abstract":"In a previous study, we found low persistence of linkage disequilibrium (LD) phase across breeding populations of Atlantic salmon. Accordingly, we observed no increase in accuracy from combining these populations for genomic prediction. In this study, we aimed to examine if the same were true for detection power in genome-wide association studies (GWAS), in terms of reduction in p-values, and if the precision of mapping quantitative trait loci (QTL) would improve from such analysis. Since individual records may not always be available, e.g. due to proprietorship or confidentiality, we also compared mega-analysis and meta-analysis. Mega-analysis needs access to all individual records, whereas meta-analysis utilizes parameters, such as p-values or allele substitution effects, from multiple studies or populations. Furthermore, different methods for determining the presence or absence of independent or secondary signals, such as conditional association analysis, approximate conditional and joint analysis (COJO), and the clumping approach, were assessed. Mega-analysis resulted in increased detection power, in terms of reduction in p-values, and increased precision, compared to the within-population GWAS. Only one QTL was detected using conditional association analysis, both within populations and in mega-analysis, while the number of QTL detected with COJO and the clumping approach ranged from 1 to 19. The allele substitution effect and -log10p-values obtained from mega-analysis were highly correlated with the corresponding values from various meta-analysis methods. Compared to mega-analysis, a higher detection power and reduced precision were obtained with the meta-analysis methods. Our results show that combining multiple datasets or populations in a mega-analysis can increase detection power and mapping precision. With meta-analysis, a higher detection power was obtained compared to mega-analysis. However, care must be taken in the interpretation of the meta-analysis results from multiple populations because their test statistics might be inflated due to population structure or cryptic relatedness.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"210 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00959-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous study, we found low persistence of linkage disequilibrium (LD) phase across breeding populations of Atlantic salmon. Accordingly, we observed no increase in accuracy from combining these populations for genomic prediction. In this study, we aimed to examine if the same were true for detection power in genome-wide association studies (GWAS), in terms of reduction in p-values, and if the precision of mapping quantitative trait loci (QTL) would improve from such analysis. Since individual records may not always be available, e.g. due to proprietorship or confidentiality, we also compared mega-analysis and meta-analysis. Mega-analysis needs access to all individual records, whereas meta-analysis utilizes parameters, such as p-values or allele substitution effects, from multiple studies or populations. Furthermore, different methods for determining the presence or absence of independent or secondary signals, such as conditional association analysis, approximate conditional and joint analysis (COJO), and the clumping approach, were assessed. Mega-analysis resulted in increased detection power, in terms of reduction in p-values, and increased precision, compared to the within-population GWAS. Only one QTL was detected using conditional association analysis, both within populations and in mega-analysis, while the number of QTL detected with COJO and the clumping approach ranged from 1 to 19. The allele substitution effect and -log10p-values obtained from mega-analysis were highly correlated with the corresponding values from various meta-analysis methods. Compared to mega-analysis, a higher detection power and reduced precision were obtained with the meta-analysis methods. Our results show that combining multiple datasets or populations in a mega-analysis can increase detection power and mapping precision. With meta-analysis, a higher detection power was obtained compared to mega-analysis. However, care must be taken in the interpretation of the meta-analysis results from multiple populations because their test statistics might be inflated due to population structure or cryptic relatedness.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.