Yao Wang;Chungang Yang;Tong Li;Xinru Mi;Lixin Li;Zhu Han
{"title":"A Survey on Mean-Field Game for Dynamic Management and Control in Space-Air-Ground Network","authors":"Yao Wang;Chungang Yang;Tong Li;Xinru Mi;Lixin Li;Zhu Han","doi":"10.1109/COMST.2024.3393369","DOIUrl":"10.1109/COMST.2024.3393369","url":null,"abstract":"The data traffic volume of the 6th generation (6G) mobile communication networks is huge, and there are novel challenges in various communications services and scenarios. This calls for ultra-dense and heterogeneous deployments of network nodes both on the ground and in space, resulting in ultra-dense space-air-ground network. However, conventional models are not available to analyze and design the interactions among heterogeneous network nodes. Game theory can provide an effective mathematical modeling framework for analysis and design. For the 6G space-air-ground networks, the characteristics of stochastic, ultra-dense, and distributed control will cause conventional game theoretical approaches to confront the challenge of the curse of dimensionality. Mean-field game (MFG) can be introduced to decouple dynamic management and control among agents, to decouple their interactions in a high-dimensional regime. Although the MFG finds wide application, there lacks a comprehensive survey to clarify the basics and summarize the state of the art of MFG research status. In this survey, we investigate and provide an overview of the applications of the MFG. First, we discuss diverse 6G space-air-ground networking paradigms, and then introduce the basic concepts of the MFG. Second, various MFG-based optimal control policies together with mean-field equilibrium (MFE) solutions are investigated and surveyed. Moreover, we discuss the effectiveness of combining the MFG with other game-theoretic approaches and machine learning methods, which leads to the improvement of multi-agent system performances. Finally, we outline some open issues, technical challenges, and future research directions based on the current state of the art.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2798-2835"},"PeriodicalIF":34.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resource Management From Single-Domain 5G to End-to-End 6G Network Slicing: A Survey","authors":"Sina Ebrahimi;Faouzi Bouali;Olivier C. L. Haas","doi":"10.1109/COMST.2024.3390613","DOIUrl":"10.1109/COMST.2024.3390613","url":null,"abstract":"Network Slicing (NS) is one of the pillars of the fifth/sixth generation (5G/6G) of mobile networks. It provides the means for Mobile Network Operators (MNOs) to leverage physical infrastructure across different technological domains to support different applications. This survey analyzes the progress made on NS resource management across these domains, with a focus on the interdependence between domains and unique issues that arise in cross-domain and End-to-End (E2E) settings. Based on a generic problem formulation, NS resource management functionalities (e.g., resource allocation and orchestration) are examined across domains, revealing their limits when applied separately per domain. The appropriateness of different problem-solving methodologies is critically analyzed, and practical insights are provided, explaining how resource management should be rethought in cross-domain and E2E contexts. Furthermore, the latest advancements are reported through a detailed analysis of the most relevant research projects and experimental testbeds. Finally, the core issues facing NS resource management are dissected, and the most pertinent research directions are identified, providing practical guidelines for new researchers.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2836-2866"},"PeriodicalIF":34.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rongxin Zhu;Azzedine Boukerche;Libo Long;Qiuling Yang
{"title":"Design Guidelines on Trust Management for Underwater Wireless Sensor Networks","authors":"Rongxin Zhu;Azzedine Boukerche;Libo Long;Qiuling Yang","doi":"10.1109/COMST.2024.3389728","DOIUrl":"10.1109/COMST.2024.3389728","url":null,"abstract":"In recent years, significant advancements in wireless underwater communication and acoustic sensor technology have spurred the exploration and utilization of the ocean’s vast natural resources. underwater wireless sensor networks (UWSNs) are increasingly deployed in unattended and hostile environments, demanding robust security measures. Secure communication environments are essential for a range of UWSN applications, including coastal defense, underwater communication, and marine exploration. Trust models have emerged as effective security mechanisms to assess the reliability of individual nodes in UWSNs during adverse attacks. Unlike Wireless Sensor Networks (WSNs), UWSNs encounter distinct challenges, including constrained resources, harsh underwater conditions, and unreliable acoustic communication, making it crucial to establish a reliable trust-based system. In this paper, we review existing work on UWSN security, discuss security and trust challenges, and explore trust-based applications. Furthermore, we evaluate diverse trust models suited for UWSNs of recent years, categorizing and comparing approaches like weighted sum methods, logic-based techniques, probability and statistics models, and machine learning paradigms. Finally, we discuss contemporary challenges and future directions in UWSN trust management. By offering a systematic overview and classification of trust management approaches, this paper contributes to the understanding and development of effective trust mechanisms for UWSNs, ultimately enhancing their reliability, security, and successful operation in diverse marine applications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2547-2576"},"PeriodicalIF":34.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of RAN Architectures Toward 6G: Motivation, Development, and Enabling Technologies","authors":"Jiacheng Chen;Xiaohu Liang;Jianzhe Xue;Yu Sun;Haibo Zhou;Xuemin Shen","doi":"10.1109/COMST.2024.3388511","DOIUrl":"10.1109/COMST.2024.3388511","url":null,"abstract":"In this survey paper, we first provide insights on the evolution of radio access networks (RANs) through investigating the existing paradigms and future trends towards 6G. We then present the fully-decoupled RAN (FD-RAN), which aligns with the trends by integrating existing paradigms and introducing new features such as physical decoupling of uplink and downlink base stations. We also discuss the key technologies enabled by different architectures for further performance improvement and some open issues. We hope that this survey can stimulate more in-depth research on transforming 6G RAN so as to unleash the power of state-of-the-art technologies and meet higher performance requirements in the future.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 3","pages":"1950-1988"},"PeriodicalIF":34.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Tutorial on Near-Field XL-MIMO Communications Toward 6G","authors":"Haiquan Lu;Yong Zeng;Changsheng You;Yu Han;Jiayi Zhang;Zhe Wang;Zhenjun Dong;Shi Jin;Cheng-Xiang Wang;Tao Jiang;Xiaohu You;Rui Zhang","doi":"10.1109/COMST.2024.3387749","DOIUrl":"10.1109/COMST.2024.3387749","url":null,"abstract":"Extremely large-scale multiple-input multiple-output (XL-MIMO) is a promising technology for the sixth-generation (6G) mobile communication networks. By significantly boosting the antenna number or size to at least an order of magnitude beyond current massive MIMO systems, XL-MIMO is expected to unprecedentedly enhance the spectral efficiency and spatial resolution for wireless communication. The evolution from massive MIMO to XL-MIMO is not simply an increase in the array size, but faces new design challenges, in terms of near-field channel modeling, performance analysis, channel estimation, and practical implementation. In this article, we give a comprehensive tutorial overview on near-field XL-MIMO communications, aiming to provide useful guidance for tackling the above challenges. First, the basic near-field modeling for XL-MIMO is established, by considering the new characteristics of non-uniform spherical wave (NUSW) and spatial non-stationarity. Next, based on the near-field modeling, the performance analysis of XL-MIMO is presented, including the near-field signal-to-noise ratio (SNR) scaling laws, beam focusing pattern, achievable rate, and degrees-of-freedom (DoF). Furthermore, various XL-MIMO design issues such as near-field beam codebook, beam training, channel estimation, and delay alignment modulation (DAM) transmission are elaborated. Finally, we point out promising directions to inspire future research on near-field XL-MIMO communications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2213-2257"},"PeriodicalIF":34.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Jiang;Qiuheng Zhou;Jiguang He;Mohammad Asif Habibi;Sergiy Melnyk;Mohammed El-Absi;Bin Han;Marco Di Renzo;Hans Dieter Schotten;Fa-Long Luo;Tarek S. El-Bawab;Markku Juntti;Mérouane Debbah;Victor C. M. Leung
{"title":"Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review","authors":"Wei Jiang;Qiuheng Zhou;Jiguang He;Mohammad Asif Habibi;Sergiy Melnyk;Mohammed El-Absi;Bin Han;Marco Di Renzo;Hans Dieter Schotten;Fa-Long Luo;Tarek S. El-Bawab;Markku Juntti;Mérouane Debbah;Victor C. M. Leung","doi":"10.1109/COMST.2024.3385908","DOIUrl":"10.1109/COMST.2024.3385908","url":null,"abstract":"Next-generation cellular technologies, commonly referred to as the sixth generation (6G), are envisioned to support a higher system capacity, better performance, and network sensing capabilities. The terahertz (THz) band is one potential enabler to this end due to the large unused frequency bands and the high spatial resolution enabled by the short signal wavelength and large bandwidth. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurement for the THz band. The transceiver requirements, architectures, technological challenges, and state-of-the-art approaches to compensate for the high propagation losses, including appropriate antenna design and beamforming solutions. We overview several related technologies that either are required by or are beneficial for THz systems and networks. The synergistic design of sensing and communications is explored in depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the open research challenges towards 6G and beyond.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2326-2381"},"PeriodicalIF":34.4,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thien Thi Thanh Le;Naveed Ul Hassan;Xiaoming Chen;Mohamed-Slim Alouini;Zhu Han;Chau Yuen
{"title":"A Survey on Random Access Protocols in Direct-Access LEO Satellite-Based IoT Communication","authors":"Thien Thi Thanh Le;Naveed Ul Hassan;Xiaoming Chen;Mohamed-Slim Alouini;Zhu Han;Chau Yuen","doi":"10.1109/COMST.2024.3385347","DOIUrl":"10.1109/COMST.2024.3385347","url":null,"abstract":"Low-Earth orbit (LEO) satellites can play an important role in providing seamless coverage for the Internet of Things (IoT). In satellite-based IoT (SIoT) networks, IoT devices can communicate directly with a satellite or through a gateway, which is called direct-access SIoT and indirect-access SIoT, respectively. As the number of IoT devices requiring satellite access is increasing, the role of medium access control (MAC) protocols becomes critical in reducing the latency and improving the quality of service (QoS). In this tutorial, we provide a comprehensive review of random access (RA) protocols, more specifically, grant-free RA (GFRA) protocols, which are more efficient in handling the communication requirements of SIoT networks. We discuss the challenges that arise in designing RA protocols under time-frequency resource and preamble limitations, high mobility of satellites, sporadic traffic from IoT networks, and diverse QoS requirements of IoT applications. We also highlight future research directions, including cross-layer optimization, joint activity detection and channel estimation (JAD-CE), reinforcement-learning-based solution, protocol design for dense LEO satellite networks, and reconfigurable intelligent surface (RIS) aided SIoT.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 1","pages":"426-462"},"PeriodicalIF":34.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Clancy;Darragh Mullins;Brian Deegan;Jonathan Horgan;Enda Ward;Ciarán Eising;Patrick Denny;Edward Jones;Martin Glavin
{"title":"Wireless Access for V2X Communications: Research, Challenges and Opportunities","authors":"Joseph Clancy;Darragh Mullins;Brian Deegan;Jonathan Horgan;Enda Ward;Ciarán Eising;Patrick Denny;Edward Jones;Martin Glavin","doi":"10.1109/COMST.2024.3384132","DOIUrl":"10.1109/COMST.2024.3384132","url":null,"abstract":"Autonomous vehicles and Intelligent Transport Systems (ITS) have started to become a reality in recent years. However, shortcomings of these early intelligent vehicles demonstrate a need to increase an intelligent vehicle’s perceptual bubble beyond the vehicle’s onboard sensors. Vehicle-to-Everything (V2X) communications is a technology intended to enable intelligent vehicles to increase their perceptive range via communication with the outside world, i.e., other vehicles, road users, and infrastructure. One of the critical layers of V2X communications is that of the underlying wireless access. There remains an open debate on which technology (or technologies) will ultimately be adopted as the de facto wireless access technology for V2X communications. Presently, a myriad of unconnected threads of work are being undertaken to this end, resulting in an unclear picture of the current state of wireless access for V2X communications. In this tutorial review, we collate current research on wireless access for V2X communications to showcase recent developments and the challenges facing candidate technologies. To allow the reader to engage with the debate, we present an overview of the field of V2X communications, its history, and standardisation. Following this, we provide an overview of the key candidate wireless access technologies that may enable V2X communications. Through this work, we aim to provide a comprehensive first step into the discipline of wireless access for V2X communications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 3","pages":"2082-2119"},"PeriodicalIF":34.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond the Edge: An Advanced Exploration of Reinforcement Learning for Mobile Edge Computing, Its Applications, and Future Research Trajectories","authors":"Ning Yang;Shuo Chen;Haijun Zhang;Randall Berry","doi":"10.1109/COMST.2024.3405075","DOIUrl":"10.1109/COMST.2024.3405075","url":null,"abstract":"Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale “connected things” within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 1","pages":"546-594"},"PeriodicalIF":34.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Winfried Stock;Robert T. Schwarz;Christian A. Hofmann;Andreas Knopp
{"title":"Survey on Opportunistic PNT With Signals From LEO Communication Satellites","authors":"Winfried Stock;Robert T. Schwarz;Christian A. Hofmann;Andreas Knopp","doi":"10.1109/COMST.2024.3406990","DOIUrl":"10.1109/COMST.2024.3406990","url":null,"abstract":"Positioning, Navigation, and Timing (PNT) is an essential service for modern societies, their industries, and governmental organizations. Mobility, logistics, and agriculture, among others, depend heavily on reliable PNT and will do so even more in the future. However, the predominant Global Navigation Satellite Systems (GNSS) are highly susceptible to jamming and spoofing, a threat that has increased in the recent years. As a result, there is a growing need for a robust, independent PNT backup system. A promising approach to meet this demand is to use the communication signals of satellites in Low Earth Orbit (LEO) as signals of opportunity (opportunistic LEO-PNT). In recent years, opportunistic LEO-PNT has gained relevance in academic research due to the emergence of megaconstellations. This survey provides an holistic overview of opportunistic LEO-PNT and an exhaustive review of the academic work in the field. Error sources and challenges with respect to the development of operational systems are evaluated, and the state of the art performance is analyzed. System-level strategies to mitigate the error sources and challenges are identified, including the combination of opportunistic LEO-PNT with GNSS or other sensors, or the use of base stations. Future research directions, such as the investigation of non-accuracy related KPIs, the required receiver hardware, or the use in low SNR scenarios, are derived.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 1","pages":"77-107"},"PeriodicalIF":34.4,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}