{"title":"End-Edge-Cloud Collaborative Computing for Deep Learning: A Comprehensive Survey","authors":"Yingchao Wang;Chen Yang;Shulin Lan;Liehuang Zhu;Yan Zhang","doi":"10.1109/COMST.2024.3393230","DOIUrl":null,"url":null,"abstract":"The booming development of deep learning applications and services heavily relies on large deep learning models and massive data in the cloud. However, cloud-based deep learning encounters challenges in meeting the application requirements of responsiveness, adaptability, and reliability. Edge-based and end-based deep learning enables rapid, near real-time analysis and response, but edge nodes and end devices usually have limited resources to support large models. This necessitates the integration of end, edge, and cloud computing technologies to combine their different advantages. Despite the existence of numerous studies on edge-cloud collaboration, a comprehensive survey for end-edge-cloud computing-enabled deep learning is needed to review the current status and point out future directions. Therefore, this paper: 1) analyzes the collaborative elements within the end-edge-cloud computing system for deep learning, and proposes collaborative training, inference, and updating methods and mechanisms for deep learning models under the end-edge-cloud collaboration framework. 2) provides a systematic investigation of the key enabling technologies for end-edge-cloud collaborative deep learning, including model compression, model partition, and knowledge transfer. 3) highlights six open issues to stimulate continuous research efforts in the field of end-edge-cloud deep learning.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2647-2683"},"PeriodicalIF":34.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508191/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The booming development of deep learning applications and services heavily relies on large deep learning models and massive data in the cloud. However, cloud-based deep learning encounters challenges in meeting the application requirements of responsiveness, adaptability, and reliability. Edge-based and end-based deep learning enables rapid, near real-time analysis and response, but edge nodes and end devices usually have limited resources to support large models. This necessitates the integration of end, edge, and cloud computing technologies to combine their different advantages. Despite the existence of numerous studies on edge-cloud collaboration, a comprehensive survey for end-edge-cloud computing-enabled deep learning is needed to review the current status and point out future directions. Therefore, this paper: 1) analyzes the collaborative elements within the end-edge-cloud computing system for deep learning, and proposes collaborative training, inference, and updating methods and mechanisms for deep learning models under the end-edge-cloud collaboration framework. 2) provides a systematic investigation of the key enabling technologies for end-edge-cloud collaborative deep learning, including model compression, model partition, and knowledge transfer. 3) highlights six open issues to stimulate continuous research efforts in the field of end-edge-cloud deep learning.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.