Rongxin Zhu;Azzedine Boukerche;Libo Long;Qiuling Yang
{"title":"水下无线传感器网络信任管理设计指南","authors":"Rongxin Zhu;Azzedine Boukerche;Libo Long;Qiuling Yang","doi":"10.1109/COMST.2024.3389728","DOIUrl":null,"url":null,"abstract":"In recent years, significant advancements in wireless underwater communication and acoustic sensor technology have spurred the exploration and utilization of the ocean’s vast natural resources. underwater wireless sensor networks (UWSNs) are increasingly deployed in unattended and hostile environments, demanding robust security measures. Secure communication environments are essential for a range of UWSN applications, including coastal defense, underwater communication, and marine exploration. Trust models have emerged as effective security mechanisms to assess the reliability of individual nodes in UWSNs during adverse attacks. Unlike Wireless Sensor Networks (WSNs), UWSNs encounter distinct challenges, including constrained resources, harsh underwater conditions, and unreliable acoustic communication, making it crucial to establish a reliable trust-based system. In this paper, we review existing work on UWSN security, discuss security and trust challenges, and explore trust-based applications. Furthermore, we evaluate diverse trust models suited for UWSNs of recent years, categorizing and comparing approaches like weighted sum methods, logic-based techniques, probability and statistics models, and machine learning paradigms. Finally, we discuss contemporary challenges and future directions in UWSN trust management. By offering a systematic overview and classification of trust management approaches, this paper contributes to the understanding and development of effective trust mechanisms for UWSNs, ultimately enhancing their reliability, security, and successful operation in diverse marine applications.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 4","pages":"2547-2576"},"PeriodicalIF":34.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Guidelines on Trust Management for Underwater Wireless Sensor Networks\",\"authors\":\"Rongxin Zhu;Azzedine Boukerche;Libo Long;Qiuling Yang\",\"doi\":\"10.1109/COMST.2024.3389728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant advancements in wireless underwater communication and acoustic sensor technology have spurred the exploration and utilization of the ocean’s vast natural resources. underwater wireless sensor networks (UWSNs) are increasingly deployed in unattended and hostile environments, demanding robust security measures. Secure communication environments are essential for a range of UWSN applications, including coastal defense, underwater communication, and marine exploration. Trust models have emerged as effective security mechanisms to assess the reliability of individual nodes in UWSNs during adverse attacks. Unlike Wireless Sensor Networks (WSNs), UWSNs encounter distinct challenges, including constrained resources, harsh underwater conditions, and unreliable acoustic communication, making it crucial to establish a reliable trust-based system. In this paper, we review existing work on UWSN security, discuss security and trust challenges, and explore trust-based applications. Furthermore, we evaluate diverse trust models suited for UWSNs of recent years, categorizing and comparing approaches like weighted sum methods, logic-based techniques, probability and statistics models, and machine learning paradigms. Finally, we discuss contemporary challenges and future directions in UWSN trust management. By offering a systematic overview and classification of trust management approaches, this paper contributes to the understanding and development of effective trust mechanisms for UWSNs, ultimately enhancing their reliability, security, and successful operation in diverse marine applications.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 4\",\"pages\":\"2547-2576\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10502293/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502293/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design Guidelines on Trust Management for Underwater Wireless Sensor Networks
In recent years, significant advancements in wireless underwater communication and acoustic sensor technology have spurred the exploration and utilization of the ocean’s vast natural resources. underwater wireless sensor networks (UWSNs) are increasingly deployed in unattended and hostile environments, demanding robust security measures. Secure communication environments are essential for a range of UWSN applications, including coastal defense, underwater communication, and marine exploration. Trust models have emerged as effective security mechanisms to assess the reliability of individual nodes in UWSNs during adverse attacks. Unlike Wireless Sensor Networks (WSNs), UWSNs encounter distinct challenges, including constrained resources, harsh underwater conditions, and unreliable acoustic communication, making it crucial to establish a reliable trust-based system. In this paper, we review existing work on UWSN security, discuss security and trust challenges, and explore trust-based applications. Furthermore, we evaluate diverse trust models suited for UWSNs of recent years, categorizing and comparing approaches like weighted sum methods, logic-based techniques, probability and statistics models, and machine learning paradigms. Finally, we discuss contemporary challenges and future directions in UWSN trust management. By offering a systematic overview and classification of trust management approaches, this paper contributes to the understanding and development of effective trust mechanisms for UWSNs, ultimately enhancing their reliability, security, and successful operation in diverse marine applications.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.