{"title":"BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection","authors":"Jinlong Sun, Yubo Tian, Zhiwei Zhu","doi":"10.1155/mmce/6622761","DOIUrl":"https://doi.org/10.1155/mmce/6622761","url":null,"abstract":"<p>The use of surrogate models in assisting evolutionary algorithms for antenna optimization has achieved significant research outcomes. The construction of surrogate model primarily depends on two aspects; one is the selection of datasets, and the other is the model’s structure and performance. This paper proposes a novel dataset selection method aimed at enhancing the performance of the constructed surrogate model. Additionally, based on Bayesian neural network (BNN) and leveraging the advantages of handling sequence data with long short-term memory (LSTM), a BNN-LSTM surrogate model is introduced. After training, this surrogate model is used as the fitness evaluation function, enabling optimization design based on differential evolution (DE) algorithm. Experimental validations are conducted using the optimizations of a dual-frequency slotted patch antenna and a rectangular cut-corner ultrawideband antenna as examples. Results demonstrate that the proposed surrogate model exhibits high accuracy, providing a guidance for antenna optimization.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/6622761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muren Cai, Wentao Li, Xiaowei Shi, Qiaoshan Zhang, Heng Liu, Hu Liu, Yan Li, Buning Tian
{"title":"A Spaceborne Ka-Band Earth-Coverage Phased Array Antenna Based on DBF-Shared Subarray for LEO Communications","authors":"Muren Cai, Wentao Li, Xiaowei Shi, Qiaoshan Zhang, Heng Liu, Hu Liu, Yan Li, Buning Tian","doi":"10.1155/mmce/6566907","DOIUrl":"https://doi.org/10.1155/mmce/6566907","url":null,"abstract":"<p>A spaceborne Earth-coverage phased array (ECPA) antenna at Ka-band is proposed for low-Earth orbit (LEO) satellite applications, which is based on digital beamforming (DBF) partially shared subarray architecture to implement two stages of DBF. By taking into account the effects of mutual coupling in active element pattern optimization, a new method to obtain an Earth-matched beam of the equivalent element of the ECPA is presented, in which the DBF-shared subarray, segmental shaping technique, and differential evolution algorithm are utilized to achieve Earth-coverage characteristic for the ECPA. Both the design method and the principle of DBF partially shared subarray for grating lobe suppression are presented. Moreover, a 16-element DBF-shared subarray with a shared ratio of 4:1 obtaining an Earth-matched beam pattern is designed, optimized, and verified by full-wave simulation in Ansys Electronics Desktop. Taking the DBF-shared subarray as the equivalent element, an ECPA including 40 DBF-shared subarrays is also designed and simulated. Numerical results demonstrate that the proposed ECPA has excellent performance of Earth-coverage scanning to compensate for the satellite communication link variation caused by path loss variation during beam scanning for LEO applications. In addition, the ECPA has the advantages of a low sidelobe level better than −20 dB as well as grating lobe suppression.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/6566907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Wideband High-Efficiency Dual-Polarized Metal-Only Reflectarray Antenna Using Folded Groove Elements","authors":"Qiqi Zhou, Jingyi Geng, Lu Guo","doi":"10.1155/mmce/4779629","DOIUrl":"https://doi.org/10.1155/mmce/4779629","url":null,"abstract":"<p>A wideband high-efficiency dual-polarized metal-only reflectarray antenna is designed and analyzed. The unit cell is composed of a layer of grooved metal plate and a ground, with an air layer in the middle. The proposed element features a phase range of about 360° and works independently in orthogonal directions, enabling dual linearly polarized operations. Based on this unit cell, a circular array including 177 elements with a diameter of 250 mm is simulated and fabricated at 10 GHz. The measured results show that the reflectarray exhibits a good performance in both horizontal and vertical polarizations, with a 1-dB gain bandwidth of 20.2% and 20% and peak aperture efficiency of 62.3% and 61%, respectively. In addition, sidelobe and cross-polarization levels are also satisfactory.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/4779629","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact CCITL-Inspired Power Divider Design Using Multisection Transmission Lines","authors":"Taran Anusorn, Sorawis Korananan, Panuwat Janpugdee, Danai Torrungrueng","doi":"10.1155/mmce/2587550","DOIUrl":"https://doi.org/10.1155/mmce/2587550","url":null,"abstract":"<p>This work provides a comprehensive review of conjugately characteristic impedance transmission lines (CCITLs) and their applications in quarter-wave–like transformers (QWLTs). These promising concepts are employed in the development of miniaturized CCITL-based power dividers (CCITL-PDs). A thorough design procedure for CCITL-PDs with arbitrary power division ratios is presented, including detailed derivations and analysis of the perfect isolation condition. For illustration, an equal-split CCITL-PD implemented using multisection transmission lines (MSTLs) is designed to achieve a 25% reduction in electrical length compared to conventional equal-split Wilkinson power dividers. Although the achieved reduction is modest, this example provides valuable insights and approaches for further optimizations in CCITL-PD design, showcasing its potential for microwave component miniaturization.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/2587550","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Wearable Dual-Band Dual-Polarized Patch Antenna for ISM Range Applications","authors":"Pouria Shams, Mohammad Amin Honarvar","doi":"10.1155/mmce/6490949","DOIUrl":"https://doi.org/10.1155/mmce/6490949","url":null,"abstract":"<p>A compact low-profile dual-band dual-polarized wearable patch antenna, capable of working in 2.4 and 5.8 GHz ISM band for either on-body or off-body applications with different radiation patterns in each working band, is presented in this paper. The fabricated antenna consists of four layers including modified ground and patch layers and two dielectric layers made of jean fabric, and it has a radius of 30 mm with overall height of 3.4 mm fed by a single probe. The proposed structure is designed in a way that is capable of radiating linearly polarized (LP) waves in lower working frequency and circularly polarized (CP) waves in its upper working band. The ground plane is modified to ensure the dual-band radiation as well as miniaturization of the antenna. The patch of the antenna benefits from truncated corners and four circular stubs which are practically coupled with antenna’s modified ground to provide desired axial ratio and dual polarization capability. With the help of computer-based simulations, the antenna is placed on human body tissue and the calculated amount of SAR values in each band for 1 g tissue is 0.15 and 0.89 Wkg, respectively, which guarantee the safety of the human body in close proximity to the antenna.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/6490949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Merih Palandöken, Aysu Belen, Ozlem Tari, Peyman Mahouti, Tarlan Mahouti, Mehmet A. Belen
{"title":"Computationally Efficient Design Optimization of Multiband Antenna Using Deep Learning–Based Surrogate Models","authors":"Merih Palandöken, Aysu Belen, Ozlem Tari, Peyman Mahouti, Tarlan Mahouti, Mehmet A. Belen","doi":"10.1155/mmce/5442768","DOIUrl":"https://doi.org/10.1155/mmce/5442768","url":null,"abstract":"<p>In this paper, deep learning–based data-driven surrogate modeling approach is proposed for enhancing cost-efficiency of multiband antenna design optimization. The proposed surrogate model–assisted design approach has achieved a computational cost reduction of almost 40% compared to the conventional direct electromagnetic solver–based design methodologies in case of single design example. As for the validation of the proposed method, the obtained optimal design parameters from the surrogate model are used to manufacture an antenna design. The obtained results from the experimental measurement are compared with counterpart results from the literature.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/5442768","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunfeng Fan, Jiahui Han, Ke Gong, Xuehui Hu, Qing Liu, Yufang Liu
{"title":"Wide-Passband Microstrip Filters With Wide Stopband Based on Half-Wavelength Resonators Coupled by Short Connected Line","authors":"Chunfeng Fan, Jiahui Han, Ke Gong, Xuehui Hu, Qing Liu, Yufang Liu","doi":"10.1155/mmce/7924319","DOIUrl":"https://doi.org/10.1155/mmce/7924319","url":null,"abstract":"<p>A novel and simple design method of wide-passband filters with wide stopband based on half-wavelength (<i>λ</i>/2) resonators coupled by a short connected line (SCL) is proposed and analysed in this paper. Different from the traditional parallel-coupled structure filters, SCL is proposed to realize a strong coupling between two adjacent resonators and suppress the parasitic passbands simultaneously. And the eigenmode analysis method and impedance ratio characteristics are both used to reveal the mechanism of wide-stopband implementation. To further expand the stopband, filters based on step-impedance resonators (SIRs) with SCL are proposed and analysed in detail. To verify the proposed design method and wide-stopband filtering structures, three 4-pole filters with uniform-impedance resonators (UIRs), SIRs with same impedance ratio, and SIRs with different impedance ratios are designed, fabricated, and measured. The proposed filters can realize a wide stopband up to 5.8<i>f</i><sub>0</sub> with rejection level better than 20 dB. Moreover, the proposed filters can easily realize a wide bandwidth.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/7924319","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FA-UNet: Semantic Segmentation of Passive Millimeter–Wave Images for Concealed Object Detection","authors":"Huakun Zhang, Lin Guo, Deyue An, Odbal","doi":"10.1155/2024/8628149","DOIUrl":"https://doi.org/10.1155/2024/8628149","url":null,"abstract":"<p>Passive millimeter–wave (PMMW) scanners are widely used for personal security screening in public places due to their nonradiation and high real-time capabilities. However, the images obtained by these scanners frequently exhibit low signal-to-noise ratios and contrast, presenting challenges for automated detection systems. To address this issue, we propose an efficient semantic segmentation approach, FA-UNet, that employs a UNet architecture with a fusion attention mechanism to conduct binary classification (human body vs. background, including objects) for PMMW images. This approach incorporates a spatial attention mechanism into the lateral connections between the encoder and decoder and introduces a channel attention mechanism during the feature fusion process in the decoder. By combining these attention mechanisms, FA-UNet leads to more precise segmentation outcomes. The segmented image is then fused with the original image using our multistage fusion method, in which, first, the two images are blended in a 1:1 ratio for object detection. Then, a new fused image is obtained by adjusting the ratio within a certain range (0.3–0.5). Finally, the object detection results are overlaid on this fused image to generate a directly displayable image. We evaluate our method using a self-made dataset. Experimental results demonstrate that FA-UNet can accurately segment the human body region and preserve object shapes effectively. Using the fused image for object detection helps reduce false detections caused by background noise interference while improving the detection rate of weak targets. Additionally, the fused image aids in manual image interpretation in locations with higher security inspection levels and contributes to protect the privacy of individuals undergoing inspection to the greatest extent possible.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8628149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Miniaturized Ss-Shaped CP Circular Patch Antenna Design for Implantable Medical Device Applications","authors":"Muammer Omran, Changiz Ghobadi, Javad Nourinia, Majid Shokri","doi":"10.1155/2024/2742806","DOIUrl":"https://doi.org/10.1155/2024/2742806","url":null,"abstract":"<p>A small antenna is critical in wireless communication and monitoring of vital signs using data collected by implantable devices. Numerous studies address antenna miniaturization and reliability challenges while maintaining performance efficiency in this field. A reliable small-sized circularly polarized antenna of dimension (4.15<sup>2</sup> <i>π</i> × 1.28) mm<sup>3</sup> developed for medical implants operating at the 1.4-GHz Wireless Medical Telemetry Service (WMTS) narrow band is presented in this work. The shorting pin, variable arc slots, and substrate and superstrate of high dielectric constant techniques were used. The proposed antenna underwent testing in a three-layer biological simulation environment that includes the skin, fat, and muscle. Subsequently, the antenna was fabricated, and measurements were performed by placing the antenna in beef biological tissues. The measurement results confirmed the simulated results. The antenna achieves an impedance bandwidth of 98 MHz (1.367~1.465 GHz, 7%). The effective axial ratio bandwidth (AR <3 dB) is 55.2 MHz (1.3668~1.422 GHz, 3.94%), which covers the CP operating frequency range. The simulation results attain a peak realized gain of −19.2 dBic. The communication link budget and the specific absorption rate (SAR) were analyzed. The results indicate that the radiation of the proposed antenna aligns with the safety limit of IEEE C95.1-1999 standards. The antenna exhibits excellent performance and reliability compared to other works operating within the 1.4-GHz WMTS band.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2742806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis of Therapeutic Effects by Varying Slot Numbers and Slot-to-Slot Distance in Microwave Ablation Using Multislot Coaxial Antenna","authors":"Donghyuk Kim, Hyunjung Kim","doi":"10.1155/2024/8841831","DOIUrl":"https://doi.org/10.1155/2024/8841831","url":null,"abstract":"<p>Microwave ablation (MWA) is based on the energy absorbed by biological tissue through microwave emission, which raises the temperature of the tumor to perform the treatment. MWA has the advantage of causing minimal bleeding and treating deep tumors. In this study, MWA for various slot design situations in a microwave coaxial antenna (MCA) was simulated through numerical analysis. For the slot design, the number of slots and the distance between slots were determined by the analysis parameters. A tumor developed inside the liver tissue was implemented, and the temperature distribution of the tumor and surrounding liver tissue was calculated for all cases selected for numerical analysis. The Helmholtz electromagnetic equation was used to calculate the electromagnetic field inside the tissue, and the modified Pennes bioheat equation was used to calculate the temperature change in the tissue due to the emitted microwave. Treatment effects were quantitatively analyzed for each slot design condition through an apoptotic variable based on the calculated temperature distribution. Lastly, conditions that produce optimal treatment effects were derived depending on the number of slots. The analysis showed that as the distance between the slots increased from 0.5 to 3.5 mm, the optimal treatment effect was obtained when the number of slots was 4, 3, 3, and 2, respectively, and the microwave input power at that time was 3.0, 2.8, 2.6, and 3.0 W, respectively. This is expected to allow for more rigorous and more therapeutically effective MWA.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8841831","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}