{"title":"面向WLAN/WiMAX和5G应用的三频带开槽平面天线设计","authors":"Lalit Kumar, Anil Kumar Gautam","doi":"10.1155/mmce/9919578","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new small, low-profile planar triple-band microstrip antenna for WLAN/WiMAX and 5G applications. Nowadays, various wireless services are being integrated into a single device, so these devices require multiband resonant antennas to maintain their compact and portable size. Therefore, the aim of current research was to combine WLAN WiMAX and 5G communication standards together into a single wireless device by designing an antenna that can stimulate triple-band operation. The proposed antenna consists of circular-shaped rectangular slotted radiator encircled by a rectangular ring and a defected ground plane. The designed antenna has a compact size of 20 × 32 mm<sup>2</sup> (0.16<i>λ</i><sub>0</sub> × 0.256<i>λ</i><sub>0</sub>). The optimum dimensions were obtained using parametric studies of the key parameters of the antenna. The proposed antenna offers three different bands—I 2.3–2.70, II 3.2–3.92, and III 5.1–5.9 GHz, which clearly covers the entire WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5), and 5G bands. Finally, a proposed antenna was built and studied experimentally to verify the design concept as well as validate the simulation results. The good agreement of the simulation results with the measured results proved that the antenna can simultaneously operate on WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5 GHz), and 5G frequency bands. This antenna is a suitable candidate for a device that can be used for these three services simultaneously.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/9919578","citationCount":"0","resultStr":"{\"title\":\"Design of Triple-Band Slotted Planar Antenna for WLAN/WiMAX and 5G Applications\",\"authors\":\"Lalit Kumar, Anil Kumar Gautam\",\"doi\":\"10.1155/mmce/9919578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a new small, low-profile planar triple-band microstrip antenna for WLAN/WiMAX and 5G applications. Nowadays, various wireless services are being integrated into a single device, so these devices require multiband resonant antennas to maintain their compact and portable size. Therefore, the aim of current research was to combine WLAN WiMAX and 5G communication standards together into a single wireless device by designing an antenna that can stimulate triple-band operation. The proposed antenna consists of circular-shaped rectangular slotted radiator encircled by a rectangular ring and a defected ground plane. The designed antenna has a compact size of 20 × 32 mm<sup>2</sup> (0.16<i>λ</i><sub>0</sub> × 0.256<i>λ</i><sub>0</sub>). The optimum dimensions were obtained using parametric studies of the key parameters of the antenna. The proposed antenna offers three different bands—I 2.3–2.70, II 3.2–3.92, and III 5.1–5.9 GHz, which clearly covers the entire WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5), and 5G bands. Finally, a proposed antenna was built and studied experimentally to verify the design concept as well as validate the simulation results. The good agreement of the simulation results with the measured results proved that the antenna can simultaneously operate on WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5 GHz), and 5G frequency bands. This antenna is a suitable candidate for a device that can be used for these three services simultaneously.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/9919578\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/mmce/9919578\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/9919578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Design of Triple-Band Slotted Planar Antenna for WLAN/WiMAX and 5G Applications
This paper presents a new small, low-profile planar triple-band microstrip antenna for WLAN/WiMAX and 5G applications. Nowadays, various wireless services are being integrated into a single device, so these devices require multiband resonant antennas to maintain their compact and portable size. Therefore, the aim of current research was to combine WLAN WiMAX and 5G communication standards together into a single wireless device by designing an antenna that can stimulate triple-band operation. The proposed antenna consists of circular-shaped rectangular slotted radiator encircled by a rectangular ring and a defected ground plane. The designed antenna has a compact size of 20 × 32 mm2 (0.16λ0 × 0.256λ0). The optimum dimensions were obtained using parametric studies of the key parameters of the antenna. The proposed antenna offers three different bands—I 2.3–2.70, II 3.2–3.92, and III 5.1–5.9 GHz, which clearly covers the entire WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5), and 5G bands. Finally, a proposed antenna was built and studied experimentally to verify the design concept as well as validate the simulation results. The good agreement of the simulation results with the measured results proved that the antenna can simultaneously operate on WLAN (2.4/5.2/5.8 GHz), WiMAX (2.5/3.5/5.5 GHz), and 5G frequency bands. This antenna is a suitable candidate for a device that can be used for these three services simultaneously.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.