{"title":"卫星通信宽带双端口八角形毫米波MIMO天线性能评价","authors":"Poonam Tiwari, Manoj Kumar Gaur, Meenu Kaushik, Anshuman Shastri, Bhupender Singh, Vishant Gahlaut","doi":"10.1155/mmce/1456913","DOIUrl":null,"url":null,"abstract":"<p>A printed MIMO antenna specifically designed for small satellite communication has been presented in this paper. The antenna is invented of two radiators resonating at millimeter-wave and constructed using Rogers’s RT duroid 5880. The design includes two identical octagonal patches with a diamond-shaped slot and having two quadrilateral notches. These elements are placed over a substrate and connected to a microstrip transmission line that embeds a quarter-wave transformer. To establish the effectiveness of the MIMO antenna being proposed, a comparative analysis is conducted between its simulated and experimental performance. Each radiator in the antenna setup includes partial ground, which forms the back layer of the substrate. The design is simulated on the CST tool, and measurements are conducted on a Rohde and Schwarz vector network analyzer. The obtained results show a favorable level of agreement with the simulated outcomes, validating the effectiveness of the proposed MIMO antenna. The antenna design offers exceptional features such as wide bandwidth, self-isolated, high gain, and a directional radiation pattern while also supporting a wide frequency band, making it an ideal choice for 28 GHz band applications. The performance of MIMO antennas in diversity can be determined using parameters such as envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection coefficient (TARC). Satellite communication will be improved by implementing the suggested MIMO antenna through upgrading small satellite communication systems.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/1456913","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Wideband Dual Port Octagonal-Shaped Millimeter-Wave MIMO Antenna for Satellite Communication\",\"authors\":\"Poonam Tiwari, Manoj Kumar Gaur, Meenu Kaushik, Anshuman Shastri, Bhupender Singh, Vishant Gahlaut\",\"doi\":\"10.1155/mmce/1456913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A printed MIMO antenna specifically designed for small satellite communication has been presented in this paper. The antenna is invented of two radiators resonating at millimeter-wave and constructed using Rogers’s RT duroid 5880. The design includes two identical octagonal patches with a diamond-shaped slot and having two quadrilateral notches. These elements are placed over a substrate and connected to a microstrip transmission line that embeds a quarter-wave transformer. To establish the effectiveness of the MIMO antenna being proposed, a comparative analysis is conducted between its simulated and experimental performance. Each radiator in the antenna setup includes partial ground, which forms the back layer of the substrate. The design is simulated on the CST tool, and measurements are conducted on a Rohde and Schwarz vector network analyzer. The obtained results show a favorable level of agreement with the simulated outcomes, validating the effectiveness of the proposed MIMO antenna. The antenna design offers exceptional features such as wide bandwidth, self-isolated, high gain, and a directional radiation pattern while also supporting a wide frequency band, making it an ideal choice for 28 GHz band applications. The performance of MIMO antennas in diversity can be determined using parameters such as envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection coefficient (TARC). Satellite communication will be improved by implementing the suggested MIMO antenna through upgrading small satellite communication systems.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/1456913\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/mmce/1456913\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/1456913","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Performance Evaluation of Wideband Dual Port Octagonal-Shaped Millimeter-Wave MIMO Antenna for Satellite Communication
A printed MIMO antenna specifically designed for small satellite communication has been presented in this paper. The antenna is invented of two radiators resonating at millimeter-wave and constructed using Rogers’s RT duroid 5880. The design includes two identical octagonal patches with a diamond-shaped slot and having two quadrilateral notches. These elements are placed over a substrate and connected to a microstrip transmission line that embeds a quarter-wave transformer. To establish the effectiveness of the MIMO antenna being proposed, a comparative analysis is conducted between its simulated and experimental performance. Each radiator in the antenna setup includes partial ground, which forms the back layer of the substrate. The design is simulated on the CST tool, and measurements are conducted on a Rohde and Schwarz vector network analyzer. The obtained results show a favorable level of agreement with the simulated outcomes, validating the effectiveness of the proposed MIMO antenna. The antenna design offers exceptional features such as wide bandwidth, self-isolated, high gain, and a directional radiation pattern while also supporting a wide frequency band, making it an ideal choice for 28 GHz band applications. The performance of MIMO antennas in diversity can be determined using parameters such as envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection coefficient (TARC). Satellite communication will be improved by implementing the suggested MIMO antenna through upgrading small satellite communication systems.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.