Yaroslav Aleksandrovich Vyatkin, Vladimir Vladimirovich Shakhparonov
{"title":"Learning the native pond odor as one of the mechanisms of olfactory orientation in juvenile smooth newt Lissotriton vulgaris.","authors":"Yaroslav Aleksandrovich Vyatkin, Vladimir Vladimirovich Shakhparonov","doi":"10.1007/s00359-023-01640-y","DOIUrl":"10.1007/s00359-023-01640-y","url":null,"abstract":"<p><p>Olfaction is an important mechanism of orientation in amphibians toward the breeding site. It is known that anurans can memorize the odor of the native pond during larval development and prefer this odor prior to the beginning of dispersion. However, such a mechanism in urodeles has not been studied yet. We conducted experiments on recognition of the odor of a native water body in juveniles of the smooth newt Lissotriton vulgaris. One group of larvae were reared in pure water (control), the other group in water with morpholine (10<sup>-7</sup> mol/L). A few days after metamorphosis, the newts were tested under paired-choice conditions in a T-maze. A total of 73 newts from the experimental group and 47 newts from the control group were tested. The results of the experiment show that the newts in the experimental group preferred the morpholine solution, whereas the individuals of the control group made the choice randomly. We conclude that newts can learn the odor of the environment in which they developed and use this memory for orientation in later stages of life.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"57-63"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9917464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luiza Karina Gonçalves Meireles, Leticia Miquilini, Felipe André Costa Brito, Anderson Raiol Rodrigues, Leonardo Dutra Henriques, Einat Hauzman, Daniela Maria Oliveira Bonci, Marcelo Fernandes Costa, Olavo de Faria Galvão, Dora Fix Ventura, Paulo Roney Kilpp Goulart, Givago Silva Souza
{"title":"Chromatic discrimination in fixed saturation levels from tufted capuchin monkeys with different color vision genotypes.","authors":"Luiza Karina Gonçalves Meireles, Leticia Miquilini, Felipe André Costa Brito, Anderson Raiol Rodrigues, Leonardo Dutra Henriques, Einat Hauzman, Daniela Maria Oliveira Bonci, Marcelo Fernandes Costa, Olavo de Faria Galvão, Dora Fix Ventura, Paulo Roney Kilpp Goulart, Givago Silva Souza","doi":"10.1007/s00359-023-01644-8","DOIUrl":"10.1007/s00359-023-01644-8","url":null,"abstract":"<p><p>Recent research has proposed new approaches to investigate color vision in Old World Monkeys by measuring suprathreshold chromatic discrimination. In this study, we aimed to extend this approach to New World Monkeys with different color vision genotypes by examining their performance in chromatic discrimination tasks along different fixed chromatic saturation axes. Four tufted capuchin monkeys were included in the study, and their color vision genotypes were one classical protanope, one classical deuteranope, one non-classical protanope, and a normal trichromat. During the experiments, the monkeys were required to perform a chromatic discrimination task using pseudoisochromatic stimuli with varying target saturations of 0.06, 0.04, 0.03, and 0.02 u'v' units. The number of errors made by the monkeys along different chromatic axes was recorded, and their performance was quantified using the binomial probability of their hits during the tests. Our results showed that dichromatic monkeys made more errors near the color confusion lines associated with their specific color vision genotypes, while the trichromatic monkey did not demonstrate any systematic errors. At high chromatic saturation, the trichromatic monkey had significant hits in the chromatic axes around the 180° chromatic axis, whereas the dichromatic monkeys had errors in colors around the color confusion lines. At lower saturation, the performance of the dichromatic monkeys became more challenging to differentiate among the three types, but it was still distinct from that of the trichromatic monkey. In conclusion, our findings suggest that high saturation conditions can be used to identify the color vision dichromatic phenotype of capuchin monkeys, while low chromatic saturation conditions enable the distinction between trichromats and dichromats. These results extend the understanding of color vision in New World Monkeys and highlight the usefulness of suprathreshold chromatic discrimination measures in exploring color vision in non-human primates.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"47-56"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9937241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"\"It is becoming increasingly difficult to find reviewers\"-myths and facts about peer review.","authors":"Günther K H Zupanc","doi":"10.1007/s00359-023-01642-w","DOIUrl":"10.1007/s00359-023-01642-w","url":null,"abstract":"<p><p>A frequent complaint of editors of scientific journals is that it has become increasingly difficult to find reviewers for evaluating submitted manuscripts. Such claims are, most commonly, based on anecdotal evidence. To gain more insight grounded on empirical evidence, editorial data of manuscripts submitted for publication to the Journal of Comparative Physiology A between 2014 and 2021 were analyzed. No evidence was found that more invitations were necessary over time to get manuscripts reviewed; that the reviewer's response time after invitation increased; that the number of reviewers who completed their reports, relative to the number of reviewers who had agreed to review a manuscript, decreased; and that the recommendation behavior of reviewers changed. The only significant trend observed was among reviewers who completed their reports later than agreed. The average number of days that these reviewers submitted their evaluations roughly doubled over the period analyzed. By contrast, neither the proportion of late vs. early reviews, nor the time for completing the reviews among the punctual reviewers, changed. Comparison with editorial data from other journals suggests that journals that serve a smaller community of readers and authors, and whose editors themselves contact potential reviewers, perform better in terms of reviewer recruitment and performance than journals that receive large numbers of submissions and use editorial assistants for sending invitations to potential reviewers.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin J How, Alasdair Robertson, Samuel P Smithers, David Wilby
{"title":"Polarization vision in terrestrial hermit crabs.","authors":"Martin J How, Alasdair Robertson, Samuel P Smithers, David Wilby","doi":"10.1007/s00359-023-01631-z","DOIUrl":"10.1007/s00359-023-01631-z","url":null,"abstract":"<p><p>Polarization vision is used by a wide range of animals for navigating, orienting, and detecting objects or areas of interest. Shallow marine and semi-terrestrial crustaceans are particularly well known for their abilities to detect predator-like or conspecific-like objects based on their polarization properties. On land, some terrestrial invertebrates use polarization vision for detecting suitable habitats, oviposition sites or conspecifics, but examples of threat detection in the polarization domain are less well known. To test whether this also applies to crustaceans that have evolved to occupy terrestrial habitats, we determined the sensitivity of two species of land and one species of marine hermit crab to predator-like visual stimuli varying in the degree of polarization. All three species showed an ability to detect these cues based on polarization contrasts alone. One terrestrial species, Coenobita rugosus, showed an increased sensitivity to objects with a higher degree of polarization than the background. This is the inverse of most animals studied to date, suggesting that the ecological drivers for polarization vision may be different in the terrestrial environment.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"899-905"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9277240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam J Blake, Emmanuel Hung, Stephanie To, Geoffrey Ng, James Qian, Gerhard Gries
{"title":"Stable flies sense and behaviorally respond to the polarization of light.","authors":"Adam J Blake, Emmanuel Hung, Stephanie To, Geoffrey Ng, James Qian, Gerhard Gries","doi":"10.1007/s00359-023-01624-y","DOIUrl":"10.1007/s00359-023-01624-y","url":null,"abstract":"<p><p>Insects use their polarization-sensitive photoreceptors in a variety of ecological contexts including host-foraging. Here, we investigated the effect of polarized light on host foraging by the blood-feeding stable fly, Stomoxys calcitrans, a pest of livestock. Electroretinogram recordings with chromatic adaptation demonstrated that the spectral sensitivity of stable flies resembles that of other calyptrate flies. Histological studies of the flies' compound eye revealed differences in microvillar arrangement of ommatidial types, assumed to be pale and yellow, with the yellow R7 and pale R8 photoreceptors having the greatest polarization sensitivity. In behavioural experiments, stable flies preferred to alight on horizontally polarized stimuli with a high degree of linear polarization. This preferential response disappeared when either ultraviolet (UV) or human-visible wavelengths were omitted from light stimuli. Removing specific wavelength bands further revealed that the combination of UV (330-400 nm) and blue (400-525 nm) wavelength bands was sufficient to enable polarized light discrimination by flies. These findings enhance our understanding of polarization vision and foraging behavior among hematophagous insects and should inform future trap designs.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"885-897"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9421517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Views from 'crabworld': the spatial distribution of light in a tropical mudflat.","authors":"Jochen Zeil","doi":"10.1007/s00359-023-01653-7","DOIUrl":"10.1007/s00359-023-01653-7","url":null,"abstract":"<p><p>Natural scene analysis has been extensively used to understand how the invariant structure of the visual environment may have shaped biological image processing strategies. This paper deals with four crucial, but hitherto largely neglected aspects of natural scenes: (1) the viewpoint of specific animals; (2) the fact that image statistics are not independent of the position within the visual field; (3) the influence of the direction of illumination on luminance, spectral and polarization contrast in a scene; and (4) the biologically relevant information content of natural scenes. To address these issues, I recorded the spatial distribution of light in a tropical mudflat with a spectrographic imager equipped with a polarizing filter in an attempt to describe quantitatively the visual environment of fiddler crabs. The environment viewed by the crabs has a distinct structure. Depending on the position of the sun, the luminance, the spectral composition, and the polarization characteristics of horizontal light distribution are not uniform. This is true for both skylight and for reflections from the mudflat surface. The high-contrast feature of the line of horizon dominates the vertical distribution of light and is a discontinuity in terms of luminance, spectral distribution and of image statistics. On a clear day, skylight intensity increases towards the horizon due to multiple scattering, and its spectral composition increasingly resembles that of sunlight. Sky-substratum contrast is highest at short wavelengths. I discuss the consequences of this extreme example of the topography of vision for extracting biologically relevant information from natural scenes.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"859-876"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9817780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas F Mathejczyk, Édouard J Babo, Erik Schönlein, Nikolai V Grinda, Andreas Greiner, Nina Okrožnik, Gregor Belušič, Mathias F Wernet
{"title":"Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces.","authors":"Thomas F Mathejczyk, Édouard J Babo, Erik Schönlein, Nikolai V Grinda, Andreas Greiner, Nina Okrožnik, Gregor Belušič, Mathias F Wernet","doi":"10.1007/s00359-023-01676-0","DOIUrl":"10.1007/s00359-023-01676-0","url":null,"abstract":"<p><p>Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"929-941"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathias F Wernet, Nicholas W Roberts, Gregor Belušič
{"title":"Non-celestial polarization vision in arthropods.","authors":"Mathias F Wernet, Nicholas W Roberts, Gregor Belušič","doi":"10.1007/s00359-023-01679-x","DOIUrl":"10.1007/s00359-023-01679-x","url":null,"abstract":"<p><p>Most insects can detect the pattern of polarized light in the sky with the dorsal rim area in their compound eyes and use this visual information to navigate in their environment by means of 'celestial' polarization vision. 'Non-celestial polarization vision', in contrast, refers to the ability of arthropods to analyze polarized light by means of the 'main' retina, excluding the dorsal rim area. The ability of using the main retina for polarization vision has been attracting sporadic, but steady attention during the last decade. This special issue of the Journal of Comparative Physiology A presents recent developments with a collection of seven original research articles, addressing different aspects of non-celestial polarization vision in crustaceans and insects. The contributions cover different sources of linearly polarized light in nature, the underlying retinal and neural mechanisms of object detection using polarization vision and the behavioral responses of arthropods to polarized reflections from water.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"855-857"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover images of the Journal of Comparative Physiology A and the stories behind them.","authors":"Günther K H Zupanc","doi":"10.1007/s00359-023-01678-y","DOIUrl":"10.1007/s00359-023-01678-y","url":null,"abstract":"<p><p>The cover images of the 2023 issues of the Journal of Comparative Physiology A, as well as its logo image, are presented at full size and high resolution, together with the stories behind them. These images are testament to the artistic quality of the scientific illustrations published in the Journal of Comparative Physiology A.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"955-963"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marius Beck, Vanessa Althaus, Uta Pegel, Uwe Homberg
{"title":"Neurons sensitive to non-celestial polarized light in the brain of the desert locust.","authors":"Marius Beck, Vanessa Althaus, Uta Pegel, Uwe Homberg","doi":"10.1007/s00359-023-01618-w","DOIUrl":"10.1007/s00359-023-01618-w","url":null,"abstract":"<p><p>Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":"907-928"},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}