{"title":"On the rationality of the Nielsen zeta function for maps on solvmanifolds","authors":"Karel Dekimpe, Iris Van den Bussche","doi":"10.1007/s11784-024-01116-9","DOIUrl":"https://doi.org/10.1007/s11784-024-01116-9","url":null,"abstract":"<p>In Dekimpe and Dugardein (J Fixed Point Theory Appl 17:355–370, 2015), Fel’shtyn and Lee (Topol Appl 181:62–103, 2015), the Nielsen zeta function <span>(N_f(z))</span> has been shown to be rational if <i>f</i> is a self-map of an infra-solvmanifold of type (R). It is, however, still unknown whether <span>(N_f(z))</span> is rational for self-maps on solvmanifolds. In this paper, we prove that <span>(N_f(z))</span> is rational if <i>f</i> is a self-map of a (compact) solvmanifold of dimension <span>(le 5)</span>. In any dimension, we show additionally that <span>(N_f(z))</span> is rational if <i>f</i> is a self-map of an <span>(mathcal{N}mathcal{R})</span>-solvmanifold or a solvmanifold with fundamental group of the form <span>(mathbb {Z}^nrtimes mathbb {Z})</span>.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Periodic second-order systems and coupled forced Van der Pol oscillators","authors":"Feliz Minhós, Sara Perestrelo","doi":"10.1007/s11784-024-01115-w","DOIUrl":"https://doi.org/10.1007/s11784-024-01115-w","url":null,"abstract":"<p>We present an existence and localization result for periodic solutions of second-order non-linear coupled planar systems, without requiring periodicity for the non-linearities. The arguments for the existence tool are based on a variation of the Nagumo condition and the Topological Degree Theory. The localization tool is based on a technique of orderless upper and lower solutions, that involves functions with translations. We apply our result to a system of two coupled Van der Pol oscillators with a forcing component.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bordism classes of loops and Floer’s equation in cotangent bundles","authors":"Filip Broćić, Dylan Cant","doi":"10.1007/s11784-024-01114-x","DOIUrl":"https://doi.org/10.1007/s11784-024-01114-x","url":null,"abstract":"<p>For each representative <span>(mathfrak {B})</span> of a bordism class in the free loop space of a manifold, we associate a moduli space of finite length Floer cylinders in the cotangent bundle. The left end of the Floer cylinder is required to be a lift of one of the loops in <span>(mathfrak {B})</span>, and the right end is required to lie on the zero section. Under certain assumptions on the Hamiltonian functions, the length of the Floer cylinder is a smooth proper function, and evaluating the level sets at the right end produces a family of loops cobordant to <span>(mathfrak {B})</span>. The argument produces arbitrarily long Floer cylinders with certain properties. We apply this to prove an existence result for 1-periodic orbits of certain Hamiltonian systems in cotangent bundles, and also to estimate the relative Gromov width of starshaped domains in certain cotangent bundles. The moduli space is similar to moduli spaces considered in Abouzaid (J Symp Geom 10(1):27–79, 2012), Abbondandolo and Figalli (J Differ Equ 234:626–653, 2007) and Abbondandolo and Schwarz (Geom Topol 14:1569–1722, 2010) for Tonelli Hamiltonians. The Hamiltonians we consider are not Tonelli, but rather of “contact-type” in the symplectization end.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Set theoretical pathologies in the problem of Lyapunov stability of singular points of vector fields","authors":"Yu. Ilyashenko","doi":"10.1007/s11784-024-01111-0","DOIUrl":"https://doi.org/10.1007/s11784-024-01111-0","url":null,"abstract":"<p>We prove that Lyapunov stability problem demonstrates pathologies even on the set-theoretical level. Namely, there exists an analytic one-parameter family of 5-jets of vector fields that crosses the set of stable jets by a countable union of disjoint intervals.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of normalized positive solution of nonhomogeneous biharmonic Schrödinger equations: mass-supercritical case","authors":"Yao Lu, Xiaoju Zhang","doi":"10.1007/s11784-024-01113-y","DOIUrl":"https://doi.org/10.1007/s11784-024-01113-y","url":null,"abstract":"","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haibao Duan, Grzegorz Graff, J. Jezierski, Adrian Myszkowski
{"title":"Algebraic periods and minimal number of periodic points for smooth self-maps of $$textbf{1}$$-connected $$textbf{4}$$-manifolds with definite intersection forms","authors":"Haibao Duan, Grzegorz Graff, J. Jezierski, Adrian Myszkowski","doi":"10.1007/s11784-024-01108-9","DOIUrl":"https://doi.org/10.1007/s11784-024-01108-9","url":null,"abstract":"","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some results related to the Karlsson–Nussbaum conjecture in geodesic spaces","authors":"Aleksandra Huczek","doi":"10.1007/s11784-024-01112-z","DOIUrl":"https://doi.org/10.1007/s11784-024-01112-z","url":null,"abstract":"<p>We show a Wolff–Denjoy type theorem in the case of a one-parameter continuous semigroup of nonexpansive mappings in which there is a compact mapping. Using the notion of attractor, we are also able to prove some specific properties directly related to the Karlsson–Nussbaum conjecture.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heavy sets and index bounded relative symplectic cohomology","authors":"Yuhan Sun","doi":"10.1007/s11784-024-01110-1","DOIUrl":"https://doi.org/10.1007/s11784-024-01110-1","url":null,"abstract":"<p>We use relative symplectic cohomology to detect heavy sets, with the help of index bounded contact forms. This establishes a relation between two notions SH-heaviness and heaviness, which partly answers a conjecture of Dickstein–Ganor–Polterovich–Zapolsky in the symplectically aspherical setting.\u0000</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification, non-degeneracy and existence of solutions to nonlinear Choquard equations","authors":"Zhihua Huang, Chao Liu","doi":"10.1007/s11784-024-01107-w","DOIUrl":"https://doi.org/10.1007/s11784-024-01107-w","url":null,"abstract":"","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invariant measures for place-dependent idempotent iterated function systems","authors":"Jairo K. Mengue, Elismar R. Oliveira","doi":"10.1007/s11784-024-01109-8","DOIUrl":"https://doi.org/10.1007/s11784-024-01109-8","url":null,"abstract":"<p>We study the set of invariant idempotent probabilities for place-dependent idempotent iterated function systems defined in compact metric spaces. Using well-known ideas from dynamical systems, such as the Mañé potential and the Aubry set, we provide a complete characterization of the densities of such idempotent probabilities. As an application, we provide an alternative formula for the attractor of a class of fuzzy iterated function systems.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}