Breather solutions in conservative and dissipative nonlinear Klein–Gordon lattices

IF 1.4 3区 数学 Q1 MATHEMATICS
Dirk Hennig
{"title":"Breather solutions in conservative and dissipative nonlinear Klein–Gordon lattices","authors":"Dirk Hennig","doi":"10.1007/s11784-024-01106-x","DOIUrl":null,"url":null,"abstract":"<p>We study time-periodic and spatially localised solutions (breathers) in general infinite conservative and dissipative nonlinear Klein–Gordon lattices. First, in the time-reversible (conservative) case, we give a concise proof of the existence of breathers not using the concept of the anticontinuous limit. The existence problem is converted into an operator equation for time-reversal initial conditions generating breather solutions. A nontrivial solution of this operator equation is established facilitating Schauder’s fixed point theorem. Afterwards, we prove the existence and uniqueness of breather solutions in damped and forced infinite nonlinear Klein–Gordon lattice systems utilising the contraction mapping principle.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"29 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01106-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study time-periodic and spatially localised solutions (breathers) in general infinite conservative and dissipative nonlinear Klein–Gordon lattices. First, in the time-reversible (conservative) case, we give a concise proof of the existence of breathers not using the concept of the anticontinuous limit. The existence problem is converted into an operator equation for time-reversal initial conditions generating breather solutions. A nontrivial solution of this operator equation is established facilitating Schauder’s fixed point theorem. Afterwards, we prove the existence and uniqueness of breather solutions in damped and forced infinite nonlinear Klein–Gordon lattice systems utilising the contraction mapping principle.

保守和耗散非线性克莱因-戈登网格中的呼吸解
我们研究一般无限保守和耗散非线性克莱因-戈登网格中的时间周期和空间局部解(呼吸器)。首先,在时间可逆(保守)情况下,我们给出了不使用反连续极限概念的呼吸器存在性的简明证明。存在性问题被转化为一个产生呼吸解的时间逆转初始条件的算子方程。这个算子方程的非微观解的建立促进了 Schauder 定点定理。随后,我们利用收缩映射原理证明了阻尼和强迫无限非线性克莱因-戈登晶格系统中呼吸解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信