Strong closing property of contact forms and action selecting functors

IF 1.4 3区 数学 Q1 MATHEMATICS
Kei Irie
{"title":"Strong closing property of contact forms and action selecting functors","authors":"Kei Irie","doi":"10.1007/s11784-024-01102-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of strong closing property of contact forms, inspired by the <span>\\(C^\\infty \\)</span> closing lemma for Reeb flows in dimension three. We then prove a sufficient criterion for strong closing property, which is formulated by considering a monoidal functor from a category of manifolds with contact forms to a category of filtered vector spaces. As a potential application of this criterion, we propose a conjecture which says that a standard contact form on the boundary of any symplectic ellipsoid satisfies strong closing property.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"82 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01102-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a notion of strong closing property of contact forms, inspired by the \(C^\infty \) closing lemma for Reeb flows in dimension three. We then prove a sufficient criterion for strong closing property, which is formulated by considering a monoidal functor from a category of manifolds with contact forms to a category of filtered vector spaces. As a potential application of this criterion, we propose a conjecture which says that a standard contact form on the boundary of any symplectic ellipsoid satisfies strong closing property.

联系表单和动作选择函数的强关闭属性
受三维里布流的(C^\infty \)闭合lemma 的启发,我们引入了接触形式的强闭合属性概念。然后,我们证明了强闭合性质的一个充分标准,这个标准是通过考虑从具有接触形式的流形范畴到滤波向量空间范畴的一元函数而提出的。作为这一标准的潜在应用,我们提出了一个猜想,即任何交映椭圆体边界上的标准接触形式都满足强闭合性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信