Bordism classes of loops and Floer’s equation in cotangent bundles

IF 1.4 3区 数学 Q1 MATHEMATICS
Filip Broćić, Dylan Cant
{"title":"Bordism classes of loops and Floer’s equation in cotangent bundles","authors":"Filip Broćić, Dylan Cant","doi":"10.1007/s11784-024-01114-x","DOIUrl":null,"url":null,"abstract":"<p>For each representative <span>\\(\\mathfrak {B}\\)</span> of a bordism class in the free loop space of a manifold, we associate a moduli space of finite length Floer cylinders in the cotangent bundle. The left end of the Floer cylinder is required to be a lift of one of the loops in <span>\\(\\mathfrak {B}\\)</span>, and the right end is required to lie on the zero section. Under certain assumptions on the Hamiltonian functions, the length of the Floer cylinder is a smooth proper function, and evaluating the level sets at the right end produces a family of loops cobordant to <span>\\(\\mathfrak {B}\\)</span>. The argument produces arbitrarily long Floer cylinders with certain properties. We apply this to prove an existence result for 1-periodic orbits of certain Hamiltonian systems in cotangent bundles, and also to estimate the relative Gromov width of starshaped domains in certain cotangent bundles. The moduli space is similar to moduli spaces considered in Abouzaid (J Symp Geom 10(1):27–79, 2012), Abbondandolo and Figalli (J Differ Equ 234:626–653, 2007) and Abbondandolo and Schwarz (Geom Topol 14:1569–1722, 2010) for Tonelli Hamiltonians. The Hamiltonians we consider are not Tonelli, but rather of “contact-type” in the symplectization end.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"57 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01114-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For each representative \(\mathfrak {B}\) of a bordism class in the free loop space of a manifold, we associate a moduli space of finite length Floer cylinders in the cotangent bundle. The left end of the Floer cylinder is required to be a lift of one of the loops in \(\mathfrak {B}\), and the right end is required to lie on the zero section. Under certain assumptions on the Hamiltonian functions, the length of the Floer cylinder is a smooth proper function, and evaluating the level sets at the right end produces a family of loops cobordant to \(\mathfrak {B}\). The argument produces arbitrarily long Floer cylinders with certain properties. We apply this to prove an existence result for 1-periodic orbits of certain Hamiltonian systems in cotangent bundles, and also to estimate the relative Gromov width of starshaped domains in certain cotangent bundles. The moduli space is similar to moduli spaces considered in Abouzaid (J Symp Geom 10(1):27–79, 2012), Abbondandolo and Figalli (J Differ Equ 234:626–653, 2007) and Abbondandolo and Schwarz (Geom Topol 14:1569–1722, 2010) for Tonelli Hamiltonians. The Hamiltonians we consider are not Tonelli, but rather of “contact-type” in the symplectization end.

Abstract Image

切向束中的循环和弗洛尔方程的波尔迪斯类
对于流形自由环空间中边界类的每一个代表(\(\mathfrak {B}\) ),我们都会在余切束中关联一个有限长度的弗洛尔圆柱体的模空间。弗洛尔圆柱体的左端需要是 \(\mathfrak {B}\) 中一个环的提升,右端需要位于零段上。在对哈密顿函数的某些假设下,弗洛尔圆柱体的长度是一个平滑的适当函数,在右端对水平集求值会产生一个与\(\mathfrak {B}\)共弦的环(loop)族。这个论证产生了具有某些性质的任意长的浮子圆柱体。我们将其用于证明某些哈密顿系统在余切束中的单周期轨道的存在性结果,以及估计某些余切束中星形域的相对格罗莫夫宽度。该模态空间类似于 Abouzaid(J Symp Geom 10(1):27-79, 2012)、Abbondandolo 和 Figalli(J Differ Equ 234:626-653, 2007)以及 Abbondandolo 和 Schwarz(Geom Topol 14:1569-1722, 2010)为托内利哈密尔顿系统考虑的模态空间。我们考虑的哈密顿不是托内利哈密顿,而是交点化端的 "接触型 "哈密顿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
68
审稿时长
>12 weeks
期刊介绍: The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to: (i) New developments in fixed point theory as well as in related topological methods, in particular: Degree and fixed point index for various types of maps, Algebraic topology methods in the context of the Leray-Schauder theory, Lefschetz and Nielsen theories, Borsuk-Ulam type results, Vietoris fractions and fixed points for set-valued maps. (ii) Ramifications to global analysis, dynamical systems and symplectic topology, in particular: Degree and Conley Index in the study of non-linear phenomena, Lusternik-Schnirelmann and Morse theoretic methods, Floer Homology and Hamiltonian Systems, Elliptic complexes and the Atiyah-Bott fixed point theorem, Symplectic fixed point theorems and results related to the Arnold Conjecture. (iii) Significant applications in nonlinear analysis, mathematical economics and computation theory, in particular: Bifurcation theory and non-linear PDE-s, Convex analysis and variational inequalities, KKM-maps, theory of games and economics, Fixed point algorithms for computing fixed points. (iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics, in particular: Global Riemannian geometry, Nonlinear problems in fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信