{"title":"Time-resolved visualization of an impinging jet subjected to bi-modal forcing","authors":"Basil Abdelmegied, Ahmed Naguib","doi":"10.1007/s12650-023-00950-2","DOIUrl":"https://doi.org/10.1007/s12650-023-00950-2","url":null,"abstract":"<p>High-speed flow visualization is utilized to study the effect of bi-modal forcing on an axisymmetric impinging jet at Reynolds number, based on the jet exit velocity and diameter, of <span>({mathrm{Re}}_{D}=4233)</span>. The forcing involves excitation using two frequencies simultaneously: the fundamental and subharmonic frequencies of the initial instability of the jet shear layer. The focus of the study is on the effect of the intermodal phase <span>(phi)</span> while utilizing the same modal amplitude ratio and forcing level. The natural jet and the jet forced using pure harmonic forcing at the fundamental and the subharmonic frequency are also studied as benchmark cases for bi-modal forcing. Results show that all modes of forcing accelerate the development of the jet vortex structure by producing two vortex pairings ahead of the impingement plate. This double-paired structure is rarely seen in the natural jet and is promoted the most under <i>pure subharmonic</i> forcing and bi-modal forcing. The intermodal phase is found to have a strong effect with the double-paired structure exhibiting symmetry and high cycle-to-cycle repeatability at <span>(phi approx 150^circ -165^circ)</span>, or significant asymmetry and disorganization at <span>(phi approx 90^circ -105^circ)</span>. The main distinction between bi-modal forcing at <span>(phi approx 150^circ -165^circ)</span> and pure subharmonic forcing is that the double-paired vortex structure is more persistent and has better repeatability in the former case. With subharmonic forcing alone, the vortex structure exhibits some random switching between the symmetric double-paired structure and the asymmetric structure. Overall, the promotion of double pairing leads to faster narrowing of the jet core and stronger vortex–wall interaction.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"31 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization study on boundary layer transition using surface arc plasma actuators","authors":"Tian Gan","doi":"10.1007/s12650-023-00951-1","DOIUrl":"https://doi.org/10.1007/s12650-023-00951-1","url":null,"abstract":"<p>An experiment is conducted to investigate the effect of surface arc plasma actuators (SAPAs) on the transition of a laminar boundary layer on a flat plate in Ma = 3 flow. Schlieren snapshots and the root mean square (<i>RMS</i>) of the image intensity and pressure measurements are analyzed to determine the SAPAs’ control performance. Four SAPAs in an array are placed in a spanwise direction to generate perturbations within the laminar boundary layer. The results indicate that a change from laminar to turbulent flow is achieved using SAPAs with a high repetition rate. The SAPAs introduce many thermal disturbance into the boundary layer which involves a lot turbulent structures. As a turbulent flow is formed downstream of the actuators, the <i>RMS</i> of the schlieren intensity (<i>I</i><sub>rms</sub>) and the pressure fluctuations (<i>P</i><sub>rms</sub>) increase. According to the <i>RMS</i> pressure measurements, the actuators with an actuation frequency of 10 kHz result in a 25% increase in the distance where the transition occurs. The formation of thermal gas bubbles causes trailing vortices associated with a strong shear effect downstream of the actuators. These streamwise vortices interact with the laminar boundary layer first, suggesting significant vortical activity in the boundary layer, whose thickness increases because the width of the <i>I</i><sub>rms</sub> is increasing in spanwise direction. Amplification and breakdown of these disturbances eventually lead to the laminar-turbulent transition of the boundary layer. In addition, two higher actuation frequency modes are compared to determine the frequency effect on the laminar-turbulent transition. The <i>I</i><sub>rms</sub> results indicate that the transition location moves upstream as the actuation frequency increases.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"352 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of curvature distortion on internal flow measurement of a levitated droplet using PIV","authors":"Eugene Gatete, Akiko Kaneko, Biao Shen","doi":"10.1007/s12650-023-00949-9","DOIUrl":"https://doi.org/10.1007/s12650-023-00949-9","url":null,"abstract":"","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"60 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135774753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization of pressure fluctuation characteristics of weapon bay on unmanned aerial vehicle using delayed detached eddy simulation","authors":"Yu Liu, Binqi Chen, Yong Shi, A. Rong","doi":"10.1007/s12650-023-00947-x","DOIUrl":"https://doi.org/10.1007/s12650-023-00947-x","url":null,"abstract":"Abstract In the present study CFD simulation with delayed detached eddy simulation (DDES) are performed to investigate pressure fluctuation environment on an open cavity and weapon bay of UAV. The main purpose of this study is to explore the aerodynamic noise level of complex cavities with slant ceiling and irregular length–depth ratio. First, two cases on an open cavity at Ma 0.85 are analyzed to determine the slant ceiling influence, which shows that the sound pressure levels increase by 1 dB due to the transverse flow effect. Then, a typical weapon bay on unmanned aerial vehicle is simulated to investigate the aerodynamic noise environment. The overall sound pressure level in the weapon bay is up to 157 dB, and when the Mach number turns from 0.6 to 0.8, the amplitude of all modes increases about 16–23 dB. The main focuses of this investigation are to discuss the mechanism of noise generation in a slant ceiling cavity and determine the pressure fluctuation characteristic of a typical weapon bay on unmanned aerial vehicle. Graphical abstract","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136159429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MFA-DVR: direct volume rendering of MFA models","authors":"Jianxin Sun, David Lenz, Hongfeng Yu, Tom Peterka","doi":"10.1007/s12650-023-00946-y","DOIUrl":"https://doi.org/10.1007/s12650-023-00946-y","url":null,"abstract":"","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136296338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the control of supersonic jet under different boundary conditions","authors":"Yuhang Zhou, Yunsong Gu, Longsheng Xue, Yun Jiao, Nanxing Shi, Shuai Deng","doi":"10.1007/s12650-023-00948-w","DOIUrl":"https://doi.org/10.1007/s12650-023-00948-w","url":null,"abstract":"","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Straub, Grzegorz K. Karch, Jonas Steigerwald, Filip Sadlo, Bernhard Weigand, Thomas Ertl
{"title":"Visual analysis of interface deformation in multiphase flow","authors":"Alexander Straub, Grzegorz K. Karch, Jonas Steigerwald, Filip Sadlo, Bernhard Weigand, Thomas Ertl","doi":"10.1007/s12650-023-00939-x","DOIUrl":"https://doi.org/10.1007/s12650-023-00939-x","url":null,"abstract":"Abstract In multiphase flows, the evolution of fluid-fluid interfaces is of interest in many applications. In addition to fluid dynamic forces governing the flow in the entire volume, surface tension determines droplet interfaces. Here, the analysis of interface kinematics can help in the investigation of interface deformation and the identification of potential breakups. To this end, we developed a visualization technique using metric and shape tensors to analyze interface stretching and bending. For interface stretching, we employ the eigenpairs of the metric tensor defined for the deformation rate of the fluid surface. For interface bending, we present a technique that locally captures the interface curvature change in terms of a shape tensor, extracting its principal directions and curvatures. We then visualize interface deformation by combining both representations into a novel glyph design. We apply our method to study multiphase flow simulations with particular emphasis on interface effects. These include the interplay between fluid dynamics and surface tension forces leading to breakup processes following droplet collisions, as well as droplet-droplet interactions of different fluids where Marangoni convection along the surface is explicitly taken into account. Graphical abstract","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LitVis: a visual analytics approach for managing and exploring literature","authors":"Min Tian, Guozheng Li, Xiaoru Yuan","doi":"10.1007/s12650-023-00941-3","DOIUrl":"https://doi.org/10.1007/s12650-023-00941-3","url":null,"abstract":"","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive steering on in situ particle-based volume rendering framework","authors":"Takuma Kawamura, Yuta Hasegawa, Yasuhiro Idomura","doi":"10.1007/s12650-023-00945-z","DOIUrl":"https://doi.org/10.1007/s12650-023-00945-z","url":null,"abstract":"Abstract The development of supercomputers and multi-scale computational fluid dynamics (CFD) models based on adaptive mesh refinement (AMR) enabled fast, large-scale, and high fidelity CFD simulations. Interactive in situ steering is an effective tool for debugging, searching for optimal solutions, and analyzing inverse problems in such CFD simulations. We propose an interactive in situ steering framework for large-scale CFD simulations on GPU supercomputers. This framework employs in situ particle-based volume rendering (PBVR), in situ data sampling, and a file-based control that enables interactive and asynchronous communication of steering parameters, compressed visualization particle data, and sampled monitoring data between supercomputers and user PCs. The parallelized PBVR is processed on the host CPU to avoid interference with CFD simulations on the GPU. We apply the proposed framework to a real-time plume dispersion analysis code CityLBM, which computes the lattice Boltzmann method on the block AMR grid using GPU supercomputers. In the numerical experiment, we address an inverse problem to find a pollutant source from the observation data at monitoring points and demonstrate the effectiveness of the human-in-the-loop approach via the in situ steering framework. Graphical abstract","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"296 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cavitation analysis in a re-designed direct acting pressure relief valve through flow visualization method","authors":"A. Sharma, N. Kumar, Alokekumar Das","doi":"10.1007/s12650-023-00943-1","DOIUrl":"https://doi.org/10.1007/s12650-023-00943-1","url":null,"abstract":"","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"39 1","pages":"1299 - 1319"},"PeriodicalIF":1.7,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87829564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}