Interactive steering on in situ particle-based volume rendering framework

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Takuma Kawamura, Yuta Hasegawa, Yasuhiro Idomura
{"title":"Interactive steering on in situ particle-based volume rendering framework","authors":"Takuma Kawamura, Yuta Hasegawa, Yasuhiro Idomura","doi":"10.1007/s12650-023-00945-z","DOIUrl":null,"url":null,"abstract":"Abstract The development of supercomputers and multi-scale computational fluid dynamics (CFD) models based on adaptive mesh refinement (AMR) enabled fast, large-scale, and high fidelity CFD simulations. Interactive in situ steering is an effective tool for debugging, searching for optimal solutions, and analyzing inverse problems in such CFD simulations. We propose an interactive in situ steering framework for large-scale CFD simulations on GPU supercomputers. This framework employs in situ particle-based volume rendering (PBVR), in situ data sampling, and a file-based control that enables interactive and asynchronous communication of steering parameters, compressed visualization particle data, and sampled monitoring data between supercomputers and user PCs. The parallelized PBVR is processed on the host CPU to avoid interference with CFD simulations on the GPU. We apply the proposed framework to a real-time plume dispersion analysis code CityLBM, which computes the lattice Boltzmann method on the block AMR grid using GPU supercomputers. In the numerical experiment, we address an inverse problem to find a pollutant source from the observation data at monitoring points and demonstrate the effectiveness of the human-in-the-loop approach via the in situ steering framework. Graphical abstract","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"296 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12650-023-00945-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The development of supercomputers and multi-scale computational fluid dynamics (CFD) models based on adaptive mesh refinement (AMR) enabled fast, large-scale, and high fidelity CFD simulations. Interactive in situ steering is an effective tool for debugging, searching for optimal solutions, and analyzing inverse problems in such CFD simulations. We propose an interactive in situ steering framework for large-scale CFD simulations on GPU supercomputers. This framework employs in situ particle-based volume rendering (PBVR), in situ data sampling, and a file-based control that enables interactive and asynchronous communication of steering parameters, compressed visualization particle data, and sampled monitoring data between supercomputers and user PCs. The parallelized PBVR is processed on the host CPU to avoid interference with CFD simulations on the GPU. We apply the proposed framework to a real-time plume dispersion analysis code CityLBM, which computes the lattice Boltzmann method on the block AMR grid using GPU supercomputers. In the numerical experiment, we address an inverse problem to find a pollutant source from the observation data at monitoring points and demonstrate the effectiveness of the human-in-the-loop approach via the in situ steering framework. Graphical abstract

Abstract Image

交互式转向在原位粒子为基础的体绘制框架
超级计算机和基于自适应网格细化(AMR)的多尺度计算流体动力学(CFD)模型的发展使快速、大规模和高保真的CFD模拟成为可能。在此类CFD模拟中,交互式原位转向是进行调试、寻找最优解和分析反问题的有效工具。我们提出了一种用于GPU超级计算机上大规模CFD模拟的交互式原位转向框架。该框架采用了基于原位粒子的体积渲染(PBVR)、原位数据采样和基于文件的控制,可以在超级计算机和用户pc之间进行转向参数、压缩可视化粒子数据和采样监测数据的交互和异步通信。并行化的PBVR在主机CPU上进行处理,以避免干扰GPU上的CFD模拟。我们将所提出的框架应用于实时羽散分析代码CityLBM,该代码使用GPU超级计算机在块AMR网格上计算晶格玻尔兹曼方法。在数值实验中,我们解决了从监测点观测数据中寻找污染源的反问题,并通过原位转向框架验证了人在环方法的有效性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信