Network-Computation in Neural Systems最新文献

筛选
英文 中文
SJFO: Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing. SJFO:Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing.
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-06-03 DOI: 10.1080/0954898X.2024.2359609
Rajesh Rathinam, Premkumar Sivakumar, Sivakumar Sigamani, Ishwarya Kothandaraman
{"title":"SJFO: Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing.","authors":"Rajesh Rathinam, Premkumar Sivakumar, Sivakumar Sigamani, Ishwarya Kothandaraman","doi":"10.1080/0954898X.2024.2359609","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2359609","url":null,"abstract":"<p><p>The dynamic workload is evenly distributed among all nodes using balancing methods like hosts or VMs. Load Balancing as a Service (LBaaS) is another name for load balancing in the cloud. In this research work, the load is balanced by the application of Virtual Machine (VM) migration carried out by proposed Sail Jelly Fish Optimization (SJFO). The SJFO is formed by combining Sail Fish Optimizer (SFO) and Jellyfish Search (JS) optimizer. In the Cloud model, many Physical Machines (PMs) are present, where these PMs are comprised of many VMs. Each VM has many tasks, and these tasks depend on various parameters like <i>C</i>entral Processing Unit (CPU), memory, Million Instructions per Second (MIPS), capacity, total number of processing entities, as well as bandwidth. Here, the load is predicted by Deep Recurrent Neural Network (DRNN) and this predicted load is compared with a threshold value, where VM migration is done based on predicted values. Furthermore, the performance of SJFO-VM is analysed using the metrics like capacity, load, and resource utilization. The proposed method shows better performance with a superior capacity of 0.598, an inferior load of 0.089, and an inferior resource utilization of 0.257.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning approach for sentiment analysis using text and emojis. 使用文本和表情符号进行情感分析的混合深度学习方法。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-29 DOI: 10.1080/0954898X.2024.2349275
Arjun Kuruva, C Nagaraju Chiluka
{"title":"Hybrid deep learning approach for sentiment analysis using text and emojis.","authors":"Arjun Kuruva, C Nagaraju Chiluka","doi":"10.1080/0954898X.2024.2349275","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2349275","url":null,"abstract":"<p><p>Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing. 通过改进的粒子群优化和模拟退火优化嵌入式馈电矩形微带贴片天线
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-28 DOI: 10.1080/0954898X.2024.2358961
Jakkuluri Vijaya Kumar, S Maflin Shaby
{"title":"Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing.","authors":"Jakkuluri Vijaya Kumar, S Maflin Shaby","doi":"10.1080/0954898X.2024.2358961","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358961","url":null,"abstract":"<p><p>The recent wireless communication systems require high gain, lightweight, low profile, and simple antenna structures to ensure high efficiency and reliability. The existing microstrip patch antenna (MPA) design approaches attain low gain and high return loss. To solve this issue, the geometric dimensions of the antenna should be optimized. The improved Particle Swarm Optimization (PSO) algorithm which is the combination of PSO and simulated annealing (SA) approach (PSO-SA) is employed in this paper to optimize the width and length of the inset-fed rectangular microstrip patch antennas for Ku-band and C-band applications. The inputs to the proposed algorithm such as substrate height, dielectric constant, and resonant frequency and outputs are optimized for width and height. The return loss and gain of the antenna are considered for the fitness function. To calculate the fitness value, the Feedforward Neural Network (FNN) is employed in the PSO-SA approach. The design and optimization of the proposed MPA are implemented in MATLAB software. The performance of the optimally designed antenna with the proposed approach is evaluated in terms of the radiation pattern, return loss, Voltage Standing Wave Ratio (VSWR), gain, computation time, directivity, and convergence speed.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm. 使用基于堆叠的集合深度学习算法有效预测人类皮肤癌。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-28 DOI: 10.1080/0954898X.2024.2346608
David Neels Ponkumar Devadhas, Hephzi Punithavathi Isaac Sugirtharaj, Mary Harin Fernandez, Duraipandy Periyasamy
{"title":"Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm.","authors":"David Neels Ponkumar Devadhas, Hephzi Punithavathi Isaac Sugirtharaj, Mary Harin Fernandez, Duraipandy Periyasamy","doi":"10.1080/0954898X.2024.2346608","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2346608","url":null,"abstract":"<p><p>Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI. DTDO:利用磁共振成像进行脑肿瘤分类的深度学习方法(Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI)。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-27 DOI: 10.1080/0954898X.2024.2351159
Vadamodula Prasad, Issac Diana Jeba Jingle, Gopalsamy Venkadakrishnan Sriramakrishnan
{"title":"DTDO: Driving Training Development Optimization enabled deep learning approach for brain tumour classification using MRI.","authors":"Vadamodula Prasad, Issac Diana Jeba Jingle, Gopalsamy Venkadakrishnan Sriramakrishnan","doi":"10.1080/0954898X.2024.2351159","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2351159","url":null,"abstract":"<p><p>A brain tumour is an abnormal mass of tissue. Brain tumours vary in size, from tiny to large. Moreover, they display variations in location, shape, and size, which add complexity to their detection. The accurate delineation of tumour regions poses a challenge due to their irregular boundaries. In this research, these issues are overcome by introducing the DTDO-ZFNet for detection of brain tumour. The input Magnetic Resonance Imaging (MRI) image is fed to the pre-processing stage. Tumour areas are segmented by utilizing SegNet in which the factors of SegNet are biased using DTDO. The image augmentation is carried out using eminent techniques, such as geometric transformation and colour space transformation. Here, features such as GIST descriptor, PCA-NGIST, statistical feature and Haralick features, SLBT feature, and CNN features are extricated. Finally, the categorization of the tumour is accomplished based on ZFNet, which is trained by utilizing DTDO. The devised DTDO is a consolidation of DTBO and CDDO. The comparison of proposed DTDO-ZFNet with the existing methods, which results in highest accuracy of 0.944, a positive predictive value (PPV) of 0.936, a true positive rate (TPR) of 0.939, a negative predictive value (NPV) of 0.937, and a minimal false-negative rate (FNR) of 0.061%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation. 用于叶病图像分割的优化编码器-解码器级联深度卷积网络
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-22 DOI: 10.1080/0954898X.2024.2326493
David Femi, Manapakkam Anandan Mukunthan
{"title":"Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation.","authors":"David Femi, Manapakkam Anandan Mukunthan","doi":"10.1080/0954898X.2024.2326493","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2326493","url":null,"abstract":"<p><p>Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing. 基于分数社会优化的迁移和副本管理算法,用于云计算分布式文件系统的负载平衡。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-21 DOI: 10.1080/0954898X.2024.2353665
Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa
{"title":"Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.","authors":"Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa","doi":"10.1080/0954898X.2024.2353665","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2353665","url":null,"abstract":"<p><p>Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach. 增强胸部X光图像中的多类肺病分类:混合蝠鲼觅食火山爆发算法增强多层感知器神经网络方法。
IF 1.1 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-16 DOI: 10.1080/0954898X.2024.2350579
Rajendran Thavasimuthu, Sudheer Hanumanthakari, Sridhar Sekar, Sakthivel Kirubakaran
{"title":"Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach.","authors":"Rajendran Thavasimuthu, Sudheer Hanumanthakari, Sridhar Sekar, Sakthivel Kirubakaran","doi":"10.1080/0954898X.2024.2350579","DOIUrl":"10.1080/0954898X.2024.2350579","url":null,"abstract":"<p><p>One of the most used diagnostic imaging techniques for identifying a variety of lung and bone-related conditions is the chest X-ray. Recent developments in deep learning have demonstrated several successful cases of illness diagnosis from chest X-rays. However, issues of stability and class imbalance still need to be resolved. Hence in this manuscript, multi-class lung disease classification in chest x-ray images using a hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach is proposed (MPNN-Hyb-MRF-VEA). Initially, the input chest X-ray images are taken from the Covid-Chest X-ray dataset. Anisotropic diffusion Kuwahara filtering (ADKF) is used to enhance the quality of these images and lower noise. To capture significant discriminative features, the Term frequency-inverse document frequency (TF-IDF) based feature extraction method is utilized in this case. The Multilayer Perceptron Neural Network (MPNN) serves as the classification model for multi-class lung disorders classification as COVID-19, pneumonia, tuberculosis (TB), and normal. A Hybrid Manta-Ray Foraging and Volcano Eruption Algorithm (Hyb-MRF-VEA) is introduced to further optimize and fine-tune the MPNN's parameters. The Python platform is used to accurately evaluate the proposed methodology. The performance of the proposed method provides 23.21%, 12.09%, and 5.66% higher accuracy compared with existing methods like NFM, SVM, and CNN respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent wireless channel corrupted image-denoising framework using symmetric convolution-based heuristic assisted residual attention network. 使用基于对称卷积的启发式辅助残差注意网络的智能无线信道损坏图像去噪框架。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-14 DOI: 10.1080/0954898X.2024.2350578
Sreedhar Mala, Aparna Kukunuri
{"title":"An intelligent wireless channel corrupted image-denoising framework using symmetric convolution-based heuristic assisted residual attention network.","authors":"Sreedhar Mala, Aparna Kukunuri","doi":"10.1080/0954898X.2024.2350578","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2350578","url":null,"abstract":"<p><p>Image denoising is one of the significant approaches for extracting valuable information in the required images without any errors. During the process of image transmission in the wireless medium, a wide variety of noise is presented to affect the image quality. For efficient analysis, an effective denoising approach is needed to enhance the quality of the images. The main scope of this research paper is to correct errors and remove the effects of channel degradation. A corrupted image denoising approach is developed in wireless channels to eliminate the bugs. The required images are gathered from wireless channels at the receiver end. Initially, the collected images are decomposed into several regions using Adaptive Lifting Wavelet Transform (ALWT) and then the \"Symmetric Convolution-based Residual Attention Network (SC-RAN)\" is employed, where the residual images are obtained by separating the clean image from the noisy images. The parameters present are optimized using Hybrid Energy Golden Tortoise Beetle Optimizer (HEGTBO) to maximize efficiency. The image denoising is performed over the obtained residual images and noisy images to get the final denoised images. The numerical findings of the developed model attain 31.69% regarding PSNR metrics. Thus, the analysis of the developed model shows significant improvement.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omics data classification using constitutive artificial neural network optimized with single candidate optimizer. 使用单候选优化器优化的构成型人工神经网络进行 Omics 数据分类。
IF 7.8 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2024-05-12 DOI: 10.1080/0954898X.2024.2348726
Subramaniam Madhan, Anbarasan Kalaiselvan
{"title":"Omics data classification using constitutive artificial neural network optimized with single candidate optimizer.","authors":"Subramaniam Madhan, Anbarasan Kalaiselvan","doi":"10.1080/0954898X.2024.2348726","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2348726","url":null,"abstract":"<p><p>Recent technical advancements enable omics-based biological study of molecules with very high throughput and low cost, such as genomic, proteomic, and microbionics'. To overcome this drawback, Omics Data Classification using Constitutive Artificial Neural Network Optimized with Single Candidate Optimizer (ODC-ZOA-CANN-SCO) is proposed in this manuscript. The input data is pre-processing by using Adaptive variational Bayesian filtering (AVBF) to replace missing values. The pre-processing data is fed to Zebra Optimization Algorithm (ZOA) for dimensionality reduction. Then, the Constitutive Artificial Neural Network (CANN) is employed to classify omics data. The weight parameter is optimized by Single Candidate Optimizer (SCO). The proposed ODC-ZOA-CANN-SCO method attains 25.36%, 21.04%, 22.18%, 26.90%, and 28.12% higher accuracy when analysed to the existing methods like multi-omics data integration utilizing adaptive graph learning and attention mode for patient categorization with biomarker identification (MOD-AGL-AM-PABI), deep learning method depending upon multi-omics data integration to create risk stratification prediction mode for skin cutaneous melanoma (DL-MODI-RSP-SCM), Deep belief network-base model for identifying Alzheimer's disease utilizing multi-omics data (DDN-DAD-MOD), hybrid cancer prediction depending upon multi-omics data and reinforcement learning state action reward state action (HCP-MOD-RL-SARSA), machine learning basis method under omics data including biological knowledge database for cancer clinical endpoint prediction (ML-ODBKD-CCEP) methods, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信