Energy and time-aware scheduling in diverse virtualized cloud computing environments using optimized self-attention progressive generative adversarial network.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
G Senthilkumar, S Anandamurugan
{"title":"Energy and time-aware scheduling in diverse virtualized cloud computing environments using optimized self-attention progressive generative adversarial network.","authors":"G Senthilkumar, S Anandamurugan","doi":"10.1080/0954898X.2024.2391401","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-20"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2391401","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of cloud computing has led to the widespread adoption of heterogeneous virtualized environments, offering scalable and flexible resources to meet diverse user demands. However, the increasing complexity and variability in workload characteristics pose significant challenges in optimizing energy consumption. Many scheduling algorithms have been suggested to address this. Therefore, a self-attention-based progressive generative adversarial network optimized with Dwarf Mongoose algorithm adopted Energy and Deadline Aware Scheduling in heterogeneous virtualized cloud computing (SAPGAN-DMA-DAS-HVCC) is proposed in this paper. Here, a self-attention based progressive generative adversarial network (SAPGAN) is proposed to schedule activities in a cloud environment with an objective function of makespan and energy consumption. Then Dwarf Mongoose algorithm is proposed to optimize the weight parameters of SAPGAN. Outcome of proposed approach SAPGAN-DMA-DAS-HVCC contains 32.77%, 34.83% and 35.76% higher right skewed makespan, 31.52%, 33.28% and 29.14% lower cost when analysed to the existing models, like task scheduling in heterogeneous cloud environment utilizing mean grey wolf optimization approach, energy and performance-efficient task scheduling in heterogeneous virtualized Energy and Performance Efficient Task Scheduling Algorithm, energy and make span aware scheduling of deadline sensitive tasks on the cloud environment, respectively.

利用优化的自关注渐进生成对抗网络,在多样化虚拟化云计算环境中实现能量和时间感知调度。
云计算的快速发展导致异构虚拟环境的广泛采用,为满足用户的不同需求提供了可扩展的灵活资源。然而,工作负载特征日益复杂多变,给优化能耗带来了巨大挑战。为解决这一问题,人们提出了许多调度算法。因此,本文提出了一种在异构虚拟化云计算中采用能量和截止时间感知调度(SAPGAN-DMA-DAS-HVCC)的基于自注意力的渐进生成对抗网络,并采用矮人獴算法对其进行了优化。本文提出了一种基于自注意的渐进生成对抗网络(SAPGAN),用于在云环境中调度活动,其目标函数为时间跨度(makespan)和能耗。然后提出了 Dwarf Mongoose 算法来优化 SAPGAN 的权重参数。与现有模型(如利用平均灰狼优化方法的异构云环境任务调度、异构虚拟化能源和性能高效任务调度算法中的能源和性能高效任务调度、云环境中对截止日期敏感的任务的能源和跨度感知调度)相比,所提出的 SAPGAN-DMA-DAS-HVCC 方法的结果分别是:右斜跨度提高了 32.77%、34.83% 和 35.76%,成本降低了 31.52%、33.28% 和 29.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信