Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi
{"title":"Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set.","authors":"Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi","doi":"10.1080/0954898X.2024.2413849","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2413849","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.
本研究介绍了一种基于水平集(LS-SOM)的深度自组织图神经网络,用于根据足底压力成像数据定制鞋楦。为了缓解图像的过度分割问题,即把图像分割成更多的子组件,我们构建了一个基于域的足底压力图像分割模型。随后,通过优化参数对域增长算法进行了修改。通过使用合并和拆分算法,根据域增长特征对具有 10、15、20 和 30 个隐藏层的 SOM 进行了比较和验证。此外,我们还在足底压力图像算法中加入了水平集分割方法,以提高其效率。与文献相比,本文提出的方法在像素精度、平均交叉组合率、频率加权交叉组合率和边界 F1 指数比较等方面都有显著提高。利用所提出的方法,可以优化鞋楦设计,提高穿着舒适度,尤其适合高血压患者。
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.