Networks最新文献

筛选
英文 中文
Finding conserved low‐diameter subgraphs in social and biological networks 在社会和生物网络中寻找保守的低直径子图
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-08-30 DOI: 10.1002/net.22246
Hao Pan, Yajun Lu, Balabhaskar Balasundaram, Juan S. Borrero
{"title":"Finding conserved low‐diameter subgraphs in social and biological networks","authors":"Hao Pan, Yajun Lu, Balabhaskar Balasundaram, Juan S. Borrero","doi":"10.1002/net.22246","DOIUrl":"https://doi.org/10.1002/net.22246","url":null,"abstract":"The analysis of social and biological networks often involves modeling clusters of interest as <jats:italic>cliques</jats:italic> or their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a <jats:italic>cross‐graph</jats:italic> <jats:italic>‐club</jats:italic> model, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey on optimization studies of group centrality metrics 群体中心度量优化研究调查
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-08-22 DOI: 10.1002/net.22248
Mustafa Can Camur, Chrysafis Vogiatzis
{"title":"A survey on optimization studies of group centrality metrics","authors":"Mustafa Can Camur, Chrysafis Vogiatzis","doi":"10.1002/net.22248","DOIUrl":"https://doi.org/10.1002/net.22248","url":null,"abstract":"Centrality metrics have become a popular concept in network science and optimization. Over the years, centrality has been used to assign importance and identify influential elements in various settings, including transportation, infrastructure, biological, and social networks, among others. That said, most of the literature has focused on nodal versions of centrality. Recently, group counterparts of centrality have started attracting scientific and practitioner interest. The identification of sets of nodes that are influential within a network is becoming increasingly more important. This is even more pronounced when these sets of nodes are required to induce a certain motif or structure. In this study, we review group centrality metrics from an operations research and optimization perspective for the first time. This is particularly interesting due to the rapid evolution and development of this area in the operations research community over the last decade. We first present a historical overview of how we have reached this point in the study of group centrality. We then discuss the different structures and motifs that appear prominently in the literature, alongside the techniques and methodologies that are popular. We finally present possible avenues and directions for future work, mainly in three areas: (i) probabilistic metrics to account for randomness along with stochastic optimization techniques; (ii) structures and relaxations that have not been yet studied; and (iii) new emerging applications that can take advantage of group centrality. Our survey offers a concise review of group centrality and its intersection with network analysis and optimization.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic programming algorithm for order picking in robotic mobile fulfillment systems 机器人移动履行系统中订单拣选的动态编程算法
IF 1.6 4区 计算机科学
Networks Pub Date : 2024-07-28 DOI: 10.1002/net.22245
Jan-Erik Justkowiak, M. Kovalyov, Erwin Pesch
{"title":"A dynamic programming algorithm for order picking in robotic mobile fulfillment systems","authors":"Jan-Erik Justkowiak, M. Kovalyov, Erwin Pesch","doi":"10.1002/net.22245","DOIUrl":"https://doi.org/10.1002/net.22245","url":null,"abstract":"The order scheduling and rack sequencing problem deals with the order picking process in robotic mobile fulfillment systems: automated guided vehicles lift and transport movable storage racks to picking stations to supply items requested by customer orders which are put together in cardboard boxes on a workbench of limited capacity. To efficiently operate the station, the sequence in which racks visit the station one after another and the intervals at which customer orders are scheduled must be coordinated. We present a dynamic programming algorithm for the order scheduling and rack sequencing problem at a single picking station minimizing the number of rack visits. Despite monolithic mixed integer linear programming formulations, our approach appears to be the first combinatorial solution method for the problem in literature. A computational study demonstrates the effectiveness of the approach.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141796974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selecting fast algorithms for the capacitated vehicle routing problem with machine learning techniques 利用机器学习技术为容车路由问题选择快速算法
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-07-25 DOI: 10.1002/net.22244
Roberto Asín‐Achá, Alexis Espinoza, Olivier Goldschmidt, Dorit S. Hochbaum, Isaías I. Huerta
{"title":"Selecting fast algorithms for the capacitated vehicle routing problem with machine learning techniques","authors":"Roberto Asín‐Achá, Alexis Espinoza, Olivier Goldschmidt, Dorit S. Hochbaum, Isaías I. Huerta","doi":"10.1002/net.22244","DOIUrl":"https://doi.org/10.1002/net.22244","url":null,"abstract":"We present machine learning (ML) methods for automatically selecting a “best” performing fast algorithm for the capacitated vehicle routing problem (CVRP) with unit demands. <jats:italic>Algorithm selection</jats:italic> is to automatically choose among a portfolio of algorithms the one that is predicted to work best for a given problem instance, and <jats:italic>algorithm configuration</jats:italic> is to automatically select algorithm's parameters that are predicted to work best for a given problem instance. We present a framework incorporating both algorithm selection and configuration for a portfolio that includes the automatically configured “Sweep Algorithm,” the first generated feasible solution of the hybrid genetic search algorithm, and the Clarke and Wright algorithm. The automatically selected algorithm is shown here to deliver high‐quality feasible solutions within very small running times making it highly suitable for real‐time applications and for generating initial feasible solutions for global optimization methods for CVRP. These results bode well to the effectiveness of utilizing ML for improving combinatorial optimization methods.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A heuristic with a performance guarantee for the commodity constrained split delivery vehicle routing problem 商品受限的分送车辆路由问题的性能保证启发式
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-07-25 DOI: 10.1002/net.22238
Matteo Petris, Claudia Archetti, Diego Cattaruzza, Maxime Ogier, Frédéric Semet
{"title":"A heuristic with a performance guarantee for the commodity constrained split delivery vehicle routing problem","authors":"Matteo Petris, Claudia Archetti, Diego Cattaruzza, Maxime Ogier, Frédéric Semet","doi":"10.1002/net.22238","DOIUrl":"https://doi.org/10.1002/net.22238","url":null,"abstract":"The commodity constrained split delivery vehicle routing problem (C‐SDVRP) is a routing problem where customer demands are composed of multiple commodities. A fleet of capacitated vehicles must serve customer demands in a way that minimizes the total routing costs. Vehicles can transport any set of commodities and customers are allowed to be visited multiple times. However, the demand for a single commodity must be delivered by one vehicle only. In this work, we developed a heuristic with a performance guarantee to solve the C‐SDVRP. The proposed heuristic is based on a set covering formulation, where the exponentially‐many variables correspond to routes. First, a subset of the variables is obtained by solving the linear relaxation of the formulation by means of a column generation approach which embeds a new pricing heuristic aimed to reduce the computational time. Solving the linear relaxation gives a valid lower bound used as a performance guarantee for the heuristic. Then, we devise a restricted master heuristic to provide good upper bounds: the formulation is restricted to the subset of variables found so far and solved as an integer program with a commercial solver. A local search based on a mathematical programming operator is applied to improve the solution. We test the heuristic algorithm on benchmark instances from the literature. The comparison with the state‐of‐the‐art heuristics for solving the C‐SDVRP shows that our approach significantly improves the solution time, while keeping a comparable solution quality and improving some best‐known solutions. In addition, our approach is able to solve large instances with 100 customers and six commodities, and also provides very good quality lower bounds. Furthermore, an instance of the C‐SDVRP can be transformed into a CVRP instance by simply duplicating each customer as many times as the requested commodities and by assigning as demand the demand of the single commodity. Hence, we compare heuristics for the C‐SDVRP against the state‐of‐the‐art heuristic for the Capacitated Vehicle Routing Problem (CVRP). The latter approach revealed to have the best performance. However, our approach provides solutions of comparable quality and has the interest of providing a performance guarantee.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three network design problems for community energy storage 社区储能的三个网络设计问题
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-07-17 DOI: 10.1002/net.22242
Bissan Ghaddar, Ivana Ljubić, Yuying Qiu
{"title":"Three network design problems for community energy storage","authors":"Bissan Ghaddar, Ivana Ljubić, Yuying Qiu","doi":"10.1002/net.22242","DOIUrl":"https://doi.org/10.1002/net.22242","url":null,"abstract":"In this article, we develop novel mathematical models to optimize utilization of community energy storage (CES) by clustering prosumers and consumers into energy sharing communities/microgrids in the context of a smart city. Three different microgrid configurations are modeled using a unifying mixed‐integer linear programming formulation. These configurations represent three different business models, namely: the island model, the interconnected model, and the Energy Service Companies model. The proposed mathematical formulations determine the optimal households' aggregation as well as the location and sizing of CES. To overcome the computational challenges of treating operational decisions within a multi‐period decision making framework, we also propose a decomposition approach to accelerate the computational time needed to solve larger instances. We conduct a case study based on real power consumption, power generation, and location network data from Cambridge, MA. Our mathematical models and the underlying algorithmic framework can be used in operational and strategic planning studies on smart grids to incentivize the communitarian distributed renewable energy generation and to improve the self‐consumption and self‐sufficiency of the energy sharing community. The models are also targeted to policymakers of smart cities, utility companies, and Energy Service Companies as the proposed models support decision making on renewable energy related projects investments.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo tree search for dynamic shortest‐path interdiction 蒙特卡洛树搜索动态最短路径拦截
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-07-10 DOI: 10.1002/net.22243
Alexey A. Bochkarev, J. Cole Smith
{"title":"Monte Carlo tree search for dynamic shortest‐path interdiction","authors":"Alexey A. Bochkarev, J. Cole Smith","doi":"10.1002/net.22243","DOIUrl":"https://doi.org/10.1002/net.22243","url":null,"abstract":"We present a reinforcement learning‐based heuristic for a two‐player interdiction game called the dynamic shortest path interdiction problem (DSPI). The DSPI involves an evader and an interdictor who take turns in the problem, with the interdictor selecting a set of arcs to attack and the evader choosing an arc to traverse at each step of the game. Our model employs the Monte Carlo tree search framework to learn a policy for the players using randomized roll‐outs. This policy is stored as an asymmetric game tree and can be further refined as the game unfolds. We leverage alpha–beta pruning and existing bounding schemes in the literature to prune suboptimal branches. Our numerical experiments demonstrate that the prescribed approach yields near‐optimal solutions in many cases and allows for flexibility in balancing solution quality and computational effort.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithmic solutions for maximizing shareable costs 可分担成本最大化的算法解决方案
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-06-26 DOI: 10.1002/net.22240
Rong Zou, Boyue Lin, Marc Uetz, Matthias Walter
{"title":"Algorithmic solutions for maximizing shareable costs","authors":"Rong Zou, Boyue Lin, Marc Uetz, Matthias Walter","doi":"10.1002/net.22240","DOIUrl":"https://doi.org/10.1002/net.22240","url":null,"abstract":"This article addresses the linear optimization problem to maximize the total costs that can be shared among a group of agents, while maintaining stability in the sense of the core constraints of a cooperative transferable utility game, or TU game. When maximizing total shareable costs, the cost shares must satisfy all constraints that define the core of a TU game, except for being budget balanced. The article first gives a fairly complete picture of the computational complexity of this optimization problem, its relation to optimization over the core itself, and its equivalence to other, minimal core relaxations that have been proposed earlier. We then address minimum cost spanning tree (MST) games as an example for a class of cost sharing games with non‐empty core. While submodular cost functions yield efficient algorithms to maximize shareable costs, MST games have cost functions that are subadditive, but generally not submodular. Nevertheless, it is well known that cost shares in the core of MST games can be found efficiently. In contrast, we show that the maximization of shareable costs is ‐hard for MST games and derive a 2‐approximation algorithm. Our work opens several directions for future research.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing police response times: Optimization and simulation of everyday police patrol 缩短出警时间:日常警察巡逻的优化与模拟
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-06-23 DOI: 10.1002/net.22241
Maite Dewinter, Caroline Jagtenberg, Christophe Vandeviver, Philipp M. Dau, Tom Vander Beken, Frank Witlox
{"title":"Reducing police response times: Optimization and simulation of everyday police patrol","authors":"Maite Dewinter, Caroline Jagtenberg, Christophe Vandeviver, Philipp M. Dau, Tom Vander Beken, Frank Witlox","doi":"10.1002/net.22241","DOIUrl":"https://doi.org/10.1002/net.22241","url":null,"abstract":"Police forces around the world are adapting to optimize their current practices through intelligence‐led and evidence‐based policing. This trend towards increasingly data‐driven policing also affects daily police routines. Police patrol is a complex routing problem because of the combination of reactive and proactive tasks. Moreover, a trade‐off exists between these two patrol tasks. In this article, a police patrol algorithm that combines both policing strategies into one strategy and is applicable to everyday policing, is developed. To this end, a discrete event simulation model is built that compares a p‐median redeployment strategy with several benchmark strategies, that is, p‐median deployment, hotspot (re)deployment, and random redeployment. This p‐median redeployment strategy considers the continuous alternation of idle and non‐idle vehicles. The mean response time was lowest for the p‐median deployment strategy, but the redeployment strategy results in better coverage of the area and low mean response times.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A real‐life study on the value of integrated optimization in order picking operations under dynamic order arrivals 动态订单到达情况下订单分拣操作中综合优化价值的实际研究
IF 2.1 4区 计算机科学
Networks Pub Date : 2024-06-20 DOI: 10.1002/net.22237
Ruben D'Haen, Katrien Ramaekers, Stef Moons, Kris Braekers
{"title":"A real‐life study on the value of integrated optimization in order picking operations under dynamic order arrivals","authors":"Ruben D'Haen, Katrien Ramaekers, Stef Moons, Kris Braekers","doi":"10.1002/net.22237","DOIUrl":"https://doi.org/10.1002/net.22237","url":null,"abstract":"Optimizing the order picking operations is indispensable for warehouses that promise a high customer service level. While many areas for improvement have been identified and studied in the literature, a large gap remains between academia and practice. To help with closing this gap, we perform a case‐study in collaboration with a spare‐parts warehouse in Belgium. In this study, we optimize the order picking operations of the company, using the actual warehouse layout and real order data. A state‐of‐the‐art online integrated order batching, picker routing and batch scheduling algorithm is adapted to consider multiple real‐life constraints. More specifically, the dynamic arrival of new orders is considered, and a capacity constraint on the sorting installation should be respected. Furthermore, a new waiting strategy is studied in which order pickers can temporarily postpone certain orders, as combining them with possible future order arrivals may allow for more efficient overall picking performance. Finally, the performance of the current operating policy is compared with that of both a seed batching heuristic and our metaheuristic algorithm by use of an ANOVA analysis. The results indicate that the number of order pickers can be reduced by 12.5% if the new optimization algorithm is used, accompanied by an improvement in the offered customer service level.","PeriodicalId":54734,"journal":{"name":"Networks","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信