Hao Pan, Yajun Lu, Balabhaskar Balasundaram, Juan S. Borrero
{"title":"Finding conserved low‐diameter subgraphs in social and biological networks","authors":"Hao Pan, Yajun Lu, Balabhaskar Balasundaram, Juan S. Borrero","doi":"10.1002/net.22246","DOIUrl":null,"url":null,"abstract":"The analysis of social and biological networks often involves modeling clusters of interest as <jats:italic>cliques</jats:italic> or their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a <jats:italic>cross‐graph</jats:italic> <jats:italic>‐club</jats:italic> model, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22246","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of social and biological networks often involves modeling clusters of interest as cliques or their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a cross‐graph‐club model, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.