Roberto Asín‐Achá, Alexis Espinoza, Olivier Goldschmidt, Dorit S. Hochbaum, Isaías I. Huerta
{"title":"Selecting fast algorithms for the capacitated vehicle routing problem with machine learning techniques","authors":"Roberto Asín‐Achá, Alexis Espinoza, Olivier Goldschmidt, Dorit S. Hochbaum, Isaías I. Huerta","doi":"10.1002/net.22244","DOIUrl":null,"url":null,"abstract":"We present machine learning (ML) methods for automatically selecting a “best” performing fast algorithm for the capacitated vehicle routing problem (CVRP) with unit demands. <jats:italic>Algorithm selection</jats:italic> is to automatically choose among a portfolio of algorithms the one that is predicted to work best for a given problem instance, and <jats:italic>algorithm configuration</jats:italic> is to automatically select algorithm's parameters that are predicted to work best for a given problem instance. We present a framework incorporating both algorithm selection and configuration for a portfolio that includes the automatically configured “Sweep Algorithm,” the first generated feasible solution of the hybrid genetic search algorithm, and the Clarke and Wright algorithm. The automatically selected algorithm is shown here to deliver high‐quality feasible solutions within very small running times making it highly suitable for real‐time applications and for generating initial feasible solutions for global optimization methods for CVRP. These results bode well to the effectiveness of utilizing ML for improving combinatorial optimization methods.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22244","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We present machine learning (ML) methods for automatically selecting a “best” performing fast algorithm for the capacitated vehicle routing problem (CVRP) with unit demands. Algorithm selection is to automatically choose among a portfolio of algorithms the one that is predicted to work best for a given problem instance, and algorithm configuration is to automatically select algorithm's parameters that are predicted to work best for a given problem instance. We present a framework incorporating both algorithm selection and configuration for a portfolio that includes the automatically configured “Sweep Algorithm,” the first generated feasible solution of the hybrid genetic search algorithm, and the Clarke and Wright algorithm. The automatically selected algorithm is shown here to deliver high‐quality feasible solutions within very small running times making it highly suitable for real‐time applications and for generating initial feasible solutions for global optimization methods for CVRP. These results bode well to the effectiveness of utilizing ML for improving combinatorial optimization methods.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.