Nonlinearity最新文献

筛选
英文 中文
Optimal pinwheel partitions for the Yamabe equation 山边方程的最佳针轮分区
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-27 DOI: 10.1088/1361-6544/ad700c
Mónica Clapp, Jorge Faya, Alberto Saldaña
{"title":"Optimal pinwheel partitions for the Yamabe equation","authors":"Mónica Clapp, Jorge Faya, Alberto Saldaña","doi":"10.1088/1361-6544/ad700c","DOIUrl":"https://doi.org/10.1088/1361-6544/ad700c","url":null,"abstract":"We establish the existence of an optimal partition for the Yamabe equation in <inline-formula>\u0000<tex-math><?CDATA $mathbb{R}^N$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn1.gif\"></inline-graphic></inline-formula> made up of mutually linearly isometric sets, each of them invariant under the action of a group of linear isometries. To do this, we establish the existence of a solution to a weakly coupled competitive Yamabe system, whose components are invariant under the action of the group, and each of them is obtained from the previous one by composing it with a linear isometry. We show that, as the coupling parameter goes to <inline-formula>\u0000<tex-math><?CDATA $-infty$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mo>−</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn2.gif\"></inline-graphic></inline-formula>, the components of the solutions segregate and give rise to an optimal partition that has the properties mentioned above. Finally, taking advantage of the symmetries considered, we establish the existence of infinitely many sign-changing solutions for the Yamabe equation in <inline-formula>\u0000<tex-math><?CDATA $mathbb{R}^N$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn3.gif\"></inline-graphic></inline-formula> that are different from those previously found by Ding, and del Pino, Musso, Pacard and Pistoia.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear and fractional response for nonlinear dissipative SPDEs 非线性耗散 SPDE 的线性和分数响应
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-22 DOI: 10.1088/1361-6544/ad6bdd
Giulia Carigi, Tobias Kuna, Jochen Bröcker
{"title":"Linear and fractional response for nonlinear dissipative SPDEs","authors":"Giulia Carigi, Tobias Kuna, Jochen Bröcker","doi":"10.1088/1361-6544/ad6bdd","DOIUrl":"https://doi.org/10.1088/1361-6544/ad6bdd","url":null,"abstract":"A framework to establish response theory for a class of nonlinear stochastic partial differential equations (SPDEs) is provided. More specifically, it is shown that for a certain class of observables, the averages of those observables against the stationary measure of the SPDE are differentiable (linear response) or, under weaker conditions, locally Hölder continuous (fractional response) as functions of a deterministic additive forcing. The method allows to consider observables that are not necessarily differentiable. For such observables, spectral gap results for the Markov semigroup associated with the SPDE have recently been established that are fairly accessible. This is important here as spectral gaps are a major ingredient for establishing linear response. The results are applied to the 2D stochastic Navier–Stokes equation and the stochastic two–layer quasi–geostrophic model, an intermediate complexity model popular in the geosciences to study atmosphere and ocean dynamics. The physical motivation for studying the response to perturbations in the forcings for models in geophysical fluid dynamics comes from climate change and relate to the question as to whether statistical properties of the dynamics derived under current conditions will be valid under different forcing scenarios.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic stability of a finite sum of solitary waves for the Zakharov–Kuznetsov equation 扎哈罗夫-库兹涅佐夫方程的有限孤波之和的渐近稳定性
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-20 DOI: 10.1088/1361-6544/ad694b
Didier Pilod, Frédéric Valet
{"title":"Asymptotic stability of a finite sum of solitary waves for the Zakharov–Kuznetsov equation","authors":"Didier Pilod, Frédéric Valet","doi":"10.1088/1361-6544/ad694b","DOIUrl":"https://doi.org/10.1088/1361-6544/ad694b","url":null,"abstract":"We prove the asymptotic stability of a finite sum of well-ordered solitary waves for the Zakharov–Kuznetsov equation in dimensions two and three. We also derive a qualitative version of the orbital stability result, which will be useful for studying the collision of two solitary waves in a forthcoming paper.\u0000The proof extends the ideas of Martel, Merle and Tsai for the sub-critical gKdV equation in dimension one to the higher-dimensional case. It relies on monotonicity properties on oblique half-spaces and rigidity properties around one solitary wave introduced by Côte, Muñoz, Pilod and Simpson in dimension two, and by Farah, Holmer, Roudenko and Yang in dimension three.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"19 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On q-Painlevé VI and the geometry of Segre surfaces 关于 q-Painlevé VI 和 Segre 曲面几何学
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-19 DOI: 10.1088/1361-6544/ad672b
Pieter Roffelsen
{"title":"On q-Painlevé VI and the geometry of Segre surfaces","authors":"Pieter Roffelsen","doi":"10.1088/1361-6544/ad672b","DOIUrl":"https://doi.org/10.1088/1361-6544/ad672b","url":null,"abstract":"In the context of <italic toggle=\"yes\">q</italic>-Painlevé VI with generic parameter values, the Riemann–Hilbert correspondence induces a one-to-one mapping between solutions of the nonlinear equation and points on an affine Segre surface. Upon fixing a generic point on the surface, we give formulae for the function values of the corresponding solution near the critical points, in the form of complete, convergent, asymptotic expansions. These lead in particular to the solution of the nonlinear connection problem for the general solution of <italic toggle=\"yes\">q</italic>-Painlevé VI. We further show that, when the point on the Segre surface is moved to one of the sixteen lines on the surface, one of the asymptotic expansions near the critical points truncates, under suitable parameter assumptions. At intersection points of lines, this then yields doubly truncated asymptotics at one of the critical points or simultaneous truncation at both.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"17 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonians for the quantised Volterra hierarchy 量子化伏特拉等级体系的哈密顿拳
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-14 DOI: 10.1088/1361-6544/ad68b8
Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang
{"title":"Hamiltonians for the quantised Volterra hierarchy","authors":"Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang","doi":"10.1088/1361-6544/ad68b8","DOIUrl":"https://doi.org/10.1088/1361-6544/ad68b8","url":null,"abstract":"This paper builds upon our recent work, published in Carpentier <italic toggle=\"yes\">et al</italic> (2022 <italic toggle=\"yes\">Lett. Math. Phys.</italic>\u0000<bold>112</bold> 94), where we established that the integrable Volterra lattice on a free associative algebra and the whole hierarchy of its symmetries admit a quantisation dependent on a parameter <italic toggle=\"yes\">ω</italic>. We also uncovered an intriguing aspect: all odd-degree symmetries of the hierarchy admit an alternative, non-deformation quantisation, resulting in a non-commutative algebra for any choice of the quantisation parameter <italic toggle=\"yes\">ω</italic>. In this study, we demonstrate that each equation within the quantum Volterra hierarchy can be expressed in the Heisenberg form. We provide explicit expressions for all quantum Hamiltonians and establish their commutativity. In the classical limit, these quantum Hamiltonians yield explicit expressions for the classical ones of the commutative Volterra hierarchy. Furthermore, we present Heisenberg equations and their Hamiltonians in the case of non-deformation quantisation. Finally, we discuss commuting first integrals, central elements of the quantum algebra, and the integrability problem for periodic reductions of the Volterra lattice in the context of both quantisations.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hyperbolic umbilic singularity in fast-slow systems 快慢系统中的双曲脐奇点
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-14 DOI: 10.1088/1361-6544/ad6bde
Hildeberto Jardón-Kojakhmetov, Christian Kuehn, Maximilian Steinert
{"title":"The hyperbolic umbilic singularity in fast-slow systems","authors":"Hildeberto Jardón-Kojakhmetov, Christian Kuehn, Maximilian Steinert","doi":"10.1088/1361-6544/ad6bde","DOIUrl":"https://doi.org/10.1088/1361-6544/ad6bde","url":null,"abstract":"Fast-slow systems with three slow variables and gradient structure in the fast variables have, generically, hyperbolic umbilic, elliptic umbilic or swallowtail singularities. In this article we provide a detailed local analysis of a fast-slow system near a hyperbolic umbilic singularity. In particular, we show that under some appropriate non-degeneracy conditions on the slow flow, the attracting slow manifolds jump onto the fast regime and fan out as they cross the hyperbolic umbilic singularity. The analysis is based on the blow-up technique, in which the hyperbolic umbilic point is blown up to a 5-dimensional sphere. Moreover, the reduced slow flow is also blown up and embedded into the blown-up fast formulation. Further, we describe how our analysis is related to classical theories such as catastrophe theory and constrained differential equations.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"5 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-similar blow-up solutions in the generalised Korteweg-de Vries equation: spectral analysis, normal form and asymptotics 广义科特韦格-德-弗里斯方程中的自相似炸裂解:谱分析、正态和渐近学
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-14 DOI: 10.1088/1361-6544/ad5638
S Jon Chapman, M Kavousanakis, E G Charalampidis, I G Kevrekidis, P G Kevrekidis
{"title":"Self-similar blow-up solutions in the generalised Korteweg-de Vries equation: spectral analysis, normal form and asymptotics","authors":"S Jon Chapman, M Kavousanakis, E G Charalampidis, I G Kevrekidis, P G Kevrekidis","doi":"10.1088/1361-6544/ad5638","DOIUrl":"https://doi.org/10.1088/1361-6544/ad5638","url":null,"abstract":"In the present work we revisit the problem of the generalised Korteweg–de Vries equation parametrically, as a function of the relevant nonlinearity exponent, to examine the emergence of blow-up solutions, as traveling waveforms lose their stability past a critical point of the relevant parameter <italic toggle=\"yes\">p</italic>, here at <italic toggle=\"yes\">p</italic> = 5. We provide a <italic toggle=\"yes\">normal form</italic> of the associated collapse dynamics, and illustrate how this captures the collapsing branch bifurcating from the unstable traveling branch. We also systematically characterise the linearisation spectrum of not only the traveling states, but importantly of the emergent collapsing waveforms in the so-called co-exploding frame where these waveforms are identified as stationary states. This spectrum, in addition to two positive real eigenvalues which are shown to be associated with the symmetries of translation and scaling invariance of the original (non-exploding) frame features complex patterns of negative eigenvalues that we also fully characterise. We show that the phenomenology of the latter is significantly affected by the boundary conditions and is far more complicated than in the corresponding symmetric Laplacian case of the nonlinear Schrödinger problem that has recently been explored. In addition, we explore the dynamics of the unstable solitary waves for <italic toggle=\"yes\">p</italic> &gt; 5 in the co-exploding frame.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"32 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global convergence rates from relaxed Euler equations to Navier–Stokes equations with Oldroyd-type constitutive laws 从松弛欧拉方程到含奥尔德罗伊德型构成律的纳维-斯托克斯方程的全局收敛率
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-14 DOI: 10.1088/1361-6544/ad68b7
Yue-Jun Peng, Liang Zhao
{"title":"Global convergence rates from relaxed Euler equations to Navier–Stokes equations with Oldroyd-type constitutive laws","authors":"Yue-Jun Peng, Liang Zhao","doi":"10.1088/1361-6544/ad68b7","DOIUrl":"https://doi.org/10.1088/1361-6544/ad68b7","url":null,"abstract":"In a previous work (Peng and Zhao 2022 <italic toggle=\"yes\">J. Math. Fluid Mech.</italic>\u0000<bold>24</bold> 29), it is proved that the 1D full compressible Navier–Stokes equations for a Newtonian fluid can be approximated globally-in-time by a relaxed Euler-type system with Oldroyd’s derivatives and a revised Cattaneo’s constitutive law. These two relaxations turn the whole system into a first-order quasilinear hyperbolic one with partial dissipation. In this paper, we establish the global convergence rates between the smooth solutions to the relaxed Euler-type system and the Navier–Stokes equations over periodic domains. For this purpose, we use stream function techniques together with energy estimates for error systems. These techniques may be applicable to more complicated systems.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"5 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global solutions to the three-dimensional inhomogeneous incompressible Phan-Thien–Tanner system with a class of large initial data 具有一类大初始数据的三维非均质不可压缩范-天-坦纳系统的全局解
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-14 DOI: 10.1088/1361-6544/ad6b6f
Yuhui Chen, Minling Li, Qinghe Yao, Zheng-an Yao
{"title":"Global solutions to the three-dimensional inhomogeneous incompressible Phan-Thien–Tanner system with a class of large initial data","authors":"Yuhui Chen, Minling Li, Qinghe Yao, Zheng-an Yao","doi":"10.1088/1361-6544/ad6b6f","DOIUrl":"https://doi.org/10.1088/1361-6544/ad6b6f","url":null,"abstract":"In this paper, we consider the global well-posedness of the three-dimensional inhomogeneous incompressible Phan-Thien–Tanner (PTT) system with general initial data in the critical Besov spaces. The question of whether or not PTT system is globally well posed for large data is still open. When the density <italic toggle=\"yes\">ρ</italic> is away from zero, we denote by <inline-formula>\u0000<tex-math><?CDATA $varrho: = frac1rho-1.$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ϱ</mml:mi><mml:mo>:=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mi>ρ</mml:mi></mml:mfrac><mml:mo>−</mml:mo><mml:mn>1.</mml:mn></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6b6fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> More precisely, we prove that the PTT system admits a unique global solution, provided that the initial data <italic toggle=\"yes\">ϱ</italic>\u0000<sub>0</sub>, the initial horizontal velocity <inline-formula>\u0000<tex-math><?CDATA $u_{h0}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>u</mml:mi><mml:mrow><mml:mi>h</mml:mi><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6b6fieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, the product <inline-formula>\u0000<tex-math><?CDATA $omega u_{30}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ω</mml:mi><mml:msub><mml:mi>u</mml:mi><mml:mrow><mml:mn>30</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6b6fieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> of the coupling parameter <italic toggle=\"yes\">ω</italic> and the initial vertical velocity <italic toggle=\"yes\">u</italic>\u0000<sub>30</sub>, and the initial symmetric tensor of constraints <italic toggle=\"yes\">τ</italic>\u0000<sub>0</sub> are sufficiently small. In particular, this result includes the global well-posedness of the PTT system for small initial data in the case where <inline-formula>\u0000<tex-math><?CDATA $omegain[0,1)$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ω</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy=\"false\">[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6b6fieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and for large initial vertical velocity in the case where <italic toggle=\"yes\">ω</italic> tends to zero. As a by-product, our results can be applied to the so-called Oldroyd-B system.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"41 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of traveling wave solutions for density-dependent diffusion competitive systems 密度相关扩散竞争系统行波解的存在性
IF 1.7 2区 数学
Nonlinearity Pub Date : 2024-08-13 DOI: 10.1088/1361-6544/ad6acd
Yang Wang, Xuanyu Lv, Fan Liu, Xiaoguang Zhang
{"title":"Existence of traveling wave solutions for density-dependent diffusion competitive systems","authors":"Yang Wang, Xuanyu Lv, Fan Liu, Xiaoguang Zhang","doi":"10.1088/1361-6544/ad6acd","DOIUrl":"https://doi.org/10.1088/1361-6544/ad6acd","url":null,"abstract":"In this paper we are concerned with the existence of traveling wave solutions for two species competitive systems with density-dependent diffusion. Since the density-dependent diffusion is a kind of nonlinear diffusion and degenerates at the origin, the methods for proving the existence of traveling wave solutions for competitive systems with linear diffusion are invalid. To overcome the degeneracy of diffusion, we construct a nonlinear invariant region Ω near the origin. Then by using the method of phase plane analysis, we prove the existence of traveling wave solutions connecting the origin and the unique coexistence state, when the speed <italic toggle=\"yes\">c</italic> is large than some positive value. In addition, when one species is density-dependent diffusive while the other is linear diffusive, via the change of variables and the central manifold theorem, we prove the existence of the minimal speed <inline-formula>\u0000<tex-math><?CDATA $c^*$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>c</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6acdieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. And for <inline-formula>\u0000<tex-math><?CDATA $cunicode{x2A7E} c^*$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mtext>⩾</mml:mtext><mml:msup><mml:mi>c</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6acdieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, traveling wave solutions connecting the origin and the unique coexistence state still exist. In particular, when <inline-formula>\u0000<tex-math><?CDATA $c = c^*$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>c</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"nonad6acdieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, we find that one component of the traveling wave solution is sharp type while the other component is smooth, which is a different phenomenon from linear diffusive systems and scalar equations.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信