山边方程的最佳针轮分区

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mónica Clapp, Jorge Faya, Alberto Saldaña
{"title":"山边方程的最佳针轮分区","authors":"Mónica Clapp, Jorge Faya, Alberto Saldaña","doi":"10.1088/1361-6544/ad700c","DOIUrl":null,"url":null,"abstract":"We establish the existence of an optimal partition for the Yamabe equation in <inline-formula>\n<tex-math><?CDATA $\\mathbb{R}^N$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn1.gif\"></inline-graphic></inline-formula> made up of mutually linearly isometric sets, each of them invariant under the action of a group of linear isometries. To do this, we establish the existence of a solution to a weakly coupled competitive Yamabe system, whose components are invariant under the action of the group, and each of them is obtained from the previous one by composing it with a linear isometry. We show that, as the coupling parameter goes to <inline-formula>\n<tex-math><?CDATA $-\\infty$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mo>−</mml:mo><mml:mi mathvariant=\"normal\">∞</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn2.gif\"></inline-graphic></inline-formula>, the components of the solutions segregate and give rise to an optimal partition that has the properties mentioned above. Finally, taking advantage of the symmetries considered, we establish the existence of infinitely many sign-changing solutions for the Yamabe equation in <inline-formula>\n<tex-math><?CDATA $\\mathbb{R}^N$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"nonad700cieqn3.gif\"></inline-graphic></inline-formula> that are different from those previously found by Ding, and del Pino, Musso, Pacard and Pistoia.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal pinwheel partitions for the Yamabe equation\",\"authors\":\"Mónica Clapp, Jorge Faya, Alberto Saldaña\",\"doi\":\"10.1088/1361-6544/ad700c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the existence of an optimal partition for the Yamabe equation in <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{R}^N$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad700cieqn1.gif\\\"></inline-graphic></inline-formula> made up of mutually linearly isometric sets, each of them invariant under the action of a group of linear isometries. To do this, we establish the existence of a solution to a weakly coupled competitive Yamabe system, whose components are invariant under the action of the group, and each of them is obtained from the previous one by composing it with a linear isometry. We show that, as the coupling parameter goes to <inline-formula>\\n<tex-math><?CDATA $-\\\\infty$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo>−</mml:mo><mml:mi mathvariant=\\\"normal\\\">∞</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad700cieqn2.gif\\\"></inline-graphic></inline-formula>, the components of the solutions segregate and give rise to an optimal partition that has the properties mentioned above. Finally, taking advantage of the symmetries considered, we establish the existence of infinitely many sign-changing solutions for the Yamabe equation in <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{R}^N$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\\\"nonad700cieqn3.gif\\\"></inline-graphic></inline-formula> that are different from those previously found by Ding, and del Pino, Musso, Pacard and Pistoia.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6544/ad700c\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad700c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在由相互线性等距集组成的 RN 中存在山边方程的最优分区,每个等距集在线性等距集群的作用下都是不变的。为此,我们确定了一个弱耦合竞争山边系统解的存在性,该系统的各个部分在该群的作用下都是不变的,而且每个部分都是通过与一个线性等距集组成而从前者得到的。我们的研究表明,当耦合参数为-∞时,解的各组成部分会分离,并产生具有上述性质的最优分区。最后,利用所考虑的对称性,我们确定了山部方程在 RN 中存在无限多个符号变化解,这些解与丁肇中、德尔皮诺、穆索、帕卡德和皮斯托亚之前发现的解不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal pinwheel partitions for the Yamabe equation
We establish the existence of an optimal partition for the Yamabe equation in RN made up of mutually linearly isometric sets, each of them invariant under the action of a group of linear isometries. To do this, we establish the existence of a solution to a weakly coupled competitive Yamabe system, whose components are invariant under the action of the group, and each of them is obtained from the previous one by composing it with a linear isometry. We show that, as the coupling parameter goes to , the components of the solutions segregate and give rise to an optimal partition that has the properties mentioned above. Finally, taking advantage of the symmetries considered, we establish the existence of infinitely many sign-changing solutions for the Yamabe equation in RN that are different from those previously found by Ding, and del Pino, Musso, Pacard and Pistoia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信