Hamiltonians for the quantised Volterra hierarchy

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang
{"title":"Hamiltonians for the quantised Volterra hierarchy","authors":"Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang","doi":"10.1088/1361-6544/ad68b8","DOIUrl":null,"url":null,"abstract":"This paper builds upon our recent work, published in Carpentier <italic toggle=\"yes\">et al</italic> (2022 <italic toggle=\"yes\">Lett. Math. Phys.</italic>\n<bold>112</bold> 94), where we established that the integrable Volterra lattice on a free associative algebra and the whole hierarchy of its symmetries admit a quantisation dependent on a parameter <italic toggle=\"yes\">ω</italic>. We also uncovered an intriguing aspect: all odd-degree symmetries of the hierarchy admit an alternative, non-deformation quantisation, resulting in a non-commutative algebra for any choice of the quantisation parameter <italic toggle=\"yes\">ω</italic>. In this study, we demonstrate that each equation within the quantum Volterra hierarchy can be expressed in the Heisenberg form. We provide explicit expressions for all quantum Hamiltonians and establish their commutativity. In the classical limit, these quantum Hamiltonians yield explicit expressions for the classical ones of the commutative Volterra hierarchy. Furthermore, we present Heisenberg equations and their Hamiltonians in the case of non-deformation quantisation. Finally, we discuss commuting first integrals, central elements of the quantum algebra, and the integrability problem for periodic reductions of the Volterra lattice in the context of both quantisations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad68b8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper builds upon our recent work, published in Carpentier et al (2022 Lett. Math. Phys. 112 94), where we established that the integrable Volterra lattice on a free associative algebra and the whole hierarchy of its symmetries admit a quantisation dependent on a parameter ω. We also uncovered an intriguing aspect: all odd-degree symmetries of the hierarchy admit an alternative, non-deformation quantisation, resulting in a non-commutative algebra for any choice of the quantisation parameter ω. In this study, we demonstrate that each equation within the quantum Volterra hierarchy can be expressed in the Heisenberg form. We provide explicit expressions for all quantum Hamiltonians and establish their commutativity. In the classical limit, these quantum Hamiltonians yield explicit expressions for the classical ones of the commutative Volterra hierarchy. Furthermore, we present Heisenberg equations and their Hamiltonians in the case of non-deformation quantisation. Finally, we discuss commuting first integrals, central elements of the quantum algebra, and the integrability problem for periodic reductions of the Volterra lattice in the context of both quantisations.
量子化伏特拉等级体系的哈密顿拳
这篇论文建立在我们最近发表在卡彭蒂耶等人(2022 Lett.我们还发现了一个耐人寻味的方面:该层次结构的所有奇度对称性都允许一种替代的、非变形的量子化,从而在量子化参数ω的任何选择下都会产生一个非交换代数。在这项研究中,我们证明了量子伏特拉层次结构中的每个方程都可以用海森堡形式来表达。我们提供了所有量子哈密顿的明确表达式,并建立了它们的交换性。在经典极限中,这些量子哈密顿量产生了换元伏特拉层次结构中经典哈密顿量的明确表达式。此外,我们还提出了非变形量子化情况下的海森堡方程及其哈密顿。最后,我们讨论了两种量子化背景下的换元初积分、量子代数的中心元素以及 Volterra 晶格周期性还原的可积分性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信