Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang
{"title":"Hamiltonians for the quantised Volterra hierarchy","authors":"Sylvain Carpentier, Alexander V Mikhailov, Jing Ping Wang","doi":"10.1088/1361-6544/ad68b8","DOIUrl":null,"url":null,"abstract":"This paper builds upon our recent work, published in Carpentier <italic toggle=\"yes\">et al</italic> (2022 <italic toggle=\"yes\">Lett. Math. Phys.</italic>\n<bold>112</bold> 94), where we established that the integrable Volterra lattice on a free associative algebra and the whole hierarchy of its symmetries admit a quantisation dependent on a parameter <italic toggle=\"yes\">ω</italic>. We also uncovered an intriguing aspect: all odd-degree symmetries of the hierarchy admit an alternative, non-deformation quantisation, resulting in a non-commutative algebra for any choice of the quantisation parameter <italic toggle=\"yes\">ω</italic>. In this study, we demonstrate that each equation within the quantum Volterra hierarchy can be expressed in the Heisenberg form. We provide explicit expressions for all quantum Hamiltonians and establish their commutativity. In the classical limit, these quantum Hamiltonians yield explicit expressions for the classical ones of the commutative Volterra hierarchy. Furthermore, we present Heisenberg equations and their Hamiltonians in the case of non-deformation quantisation. Finally, we discuss commuting first integrals, central elements of the quantum algebra, and the integrability problem for periodic reductions of the Volterra lattice in the context of both quantisations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad68b8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper builds upon our recent work, published in Carpentier et al (2022 Lett. Math. Phys.112 94), where we established that the integrable Volterra lattice on a free associative algebra and the whole hierarchy of its symmetries admit a quantisation dependent on a parameter ω. We also uncovered an intriguing aspect: all odd-degree symmetries of the hierarchy admit an alternative, non-deformation quantisation, resulting in a non-commutative algebra for any choice of the quantisation parameter ω. In this study, we demonstrate that each equation within the quantum Volterra hierarchy can be expressed in the Heisenberg form. We provide explicit expressions for all quantum Hamiltonians and establish their commutativity. In the classical limit, these quantum Hamiltonians yield explicit expressions for the classical ones of the commutative Volterra hierarchy. Furthermore, we present Heisenberg equations and their Hamiltonians in the case of non-deformation quantisation. Finally, we discuss commuting first integrals, central elements of the quantum algebra, and the integrability problem for periodic reductions of the Volterra lattice in the context of both quantisations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.