{"title":"Cooperative visible light communications: An overview and outlook","authors":"Olumide Alamu , Thomas O. Olwal , Karim Djouani","doi":"10.1016/j.osn.2024.100772","DOIUrl":"https://doi.org/10.1016/j.osn.2024.100772","url":null,"abstract":"<div><p>The evolution of data-intensive services and applications continues to drive the need for higher data rates in wireless communication systems, consequently depleting the radio frequency (RF) spectrum. Due to the unlicensed and enormous bandwidth available in the visible light (VL) spectrum, the emergence of visible light communication (VLC) has been considered a potential solution to alleviate the constraints associated with RF spectrum scarcity. However, the line-of-sight requirement and the inability of VL to penetrate opaque obstacles remain a daunting challenge in realizing a wider coverage area. The incorporation of cooperative communication in VLC systems serves as one of the primary solutions to address this challenge. Though various investigations are currently being conducted in this domain, a holistic report of various advances, solution approaches, and design challenges has not been captured in the open literature. Therefore, in this paper, our main goal is to present a review of the state-of-the-art research on cooperative VLC systems. Firstly, we provide a background discussion to establish the relationship between various components of cooperative VLC systems from a theoretical and analytical perspective. Secondly, we categorize various contributions in this direction under media access control (MAC), hybrid VLC-RF, power line communication-VLC (PLC-VLC), and VLC with energy harvesting. Based on the established categories, we identify various system design and evaluation methods, optimization problems, solution approaches adopted to tackle the problems, and their limitations. Thirdly, we identify various insights obtained from the presented papers that could serve as guidelines for practical system design. Finally, various design challenges and open areas for future research are identified.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"52 ","pages":"Article 100772"},"PeriodicalIF":2.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ODRAD: An optical wireless DCN dynamic-bandwidth reconfiguration with AWGR and deep reinforcement learning","authors":"Kassahun Geresu, Huaxi Gu, Meaad Fadhel, Wenting Wei, Xiaoshan Yu","doi":"10.1016/j.osn.2024.100771","DOIUrl":"10.1016/j.osn.2024.100771","url":null,"abstract":"<div><p>The rapid growth of Data Center Network (DCN) traffic has brought new challenges, such as limited bandwidth, high latency, and packet loss to existing DCNs based on electrical switches. Because of its theoretically unlimited bandwidth and faster data transmission speeds, optical switching can overcome the problems of electrically switched DCNs. Additionally, numerous research works have been devoted to optical wired DCNs. However, static and fixed-topology DCNs based on optical interconnects significantly limit their flexibility, scalability, and reconfigurability to provide adaptive bandwidth for traffic with heterogeneous characteristics. In this study, we propose and conduct performance evaluations on a reconfigurable optical wireless DCN architecture based on distributed Software-Defined Networking (SDN), Deep Reinforcement Learning (DRL), Semiconductor Optical Amplifier (SOA), and Arrayed Waveguide Grating Router (AWGR). Our architecture is called ODRAD (which stands for Optical Wireless DCN Dynamic-bandwidth Reconfiguration with AWGR and Deep Reinforcement Learning). A Mininet simulation model is established to further verify the reconfigurability of the ODRAD network for various server scales. Based on experimental verification, ODRAD achieves an average end-to-end server latency of <span><math><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> under a load of 99%. Compression results demonstrate a 17.36% improvement in packet rate latency performance compared to RotorNet and a 15.21% improvement compared to OPSquare at a load of 99% as the ODRAD network scales from 2,560 to 40,960 servers. Furthermore, ODRAD exhibits effective throughput across different routing protocols, DCN scales and loads.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"52 ","pages":"Article 100771"},"PeriodicalIF":2.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jurandir C. Lacerda Jr. , Adolfo V.T. Cartaxo , André C.B. Soares
{"title":"Novel dynamic impairment-aware algorithm for modulation, core, and spectrum assignment in SDM-EONs","authors":"Jurandir C. Lacerda Jr. , Adolfo V.T. Cartaxo , André C.B. Soares","doi":"10.1016/j.osn.2023.100763","DOIUrl":"10.1016/j.osn.2023.100763","url":null,"abstract":"<div><p><span><span>Space-division multiplexed elastic optical networks<span> (SDM-EONs) utilizing multi-core fiber (MCF) have been considered to address the growing traffic demand in transport networks. The quality of transmission (QoT) of MCF-based SDM-EONs is affected by inter-core and intra-core physical layer<span> impairments (PLIs). This paper proposes an inter-core crosstalk-aware and intra-core impairment-aware algorithm for modulation, core, and spectrum assignment (CIA-MCSA) in MCF-based SDM-EONs. The CIA-MCSA considers PLI estimation in a dynamic traffic scenario and allocates new lightpaths using strategies to avoid blocking by insufficient QoT of the new lightpath and of already active lightpaths. Using numerical simulation, the performance of the CIA-MCSA is compared with five algorithms proposed by other authors, considering two distinct </span></span></span>network topologies<span>, heterogeneous traffic demands, and different levels of inter-core crosstalk. The results show that, when compared with the most competitive of the other algorithms, </span></span><span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span><span> CIA-MCSA achieves an average reduction of the request blocking probability by at least 33.87%; </span><span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> CIA-MCSA achieves an average reduction of the bandwidth blocking probability by at least 20.74%; and <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> CIA-MCSA increases the network spectrum utilization by at least 3.04%.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100763"},"PeriodicalIF":2.2,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71492238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junling Yuan , Xuhong Li , Qikun Zhang , Jing Zhang , Suping Li
{"title":"A routing modulation and spectrum assignment algorithm for semi-filterless elastic optical networks","authors":"Junling Yuan , Xuhong Li , Qikun Zhang , Jing Zhang , Suping Li","doi":"10.1016/j.osn.2023.100764","DOIUrl":"10.1016/j.osn.2023.100764","url":null,"abstract":"<div><p><span><span>Development of 5G/F5G technology leads to massive applications accessing to backbone networks, which requires the backbone networks to be upgraded. Semi-filterless elastic </span>optical network (semi-FEON) is a suitable technology to cheaply and gradually upgrade backbone networks. In semi-FEON, routing, modulation and spectrum assignment (RMSA) problem is one of the key issues. In this paper, we study the dynamic RMSA problem in semi-FEON and propose an RMSA algorithm. The algorithm includes three innovations: a K-shortest-subnet-paths (KSSP) algorithm is designed to search candidate paths in semi-FEON, a load-balancing-least-resources (LBLR) policy is introduced to re-sort the candidate paths, and a maximum-occupied-neighbors (MON) rule is proposed to assign spectrum resources to connection requests in semi-FEON. Simulation results show that the proposed KSSP-LBLR-MON algorithm outperforms the existing works in term of bandwidth </span>blocking probability. Concretely, the improvement ratio is greater than 59.98% and 66.64% in German-Net and Henan-Net, respectively.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100764"},"PeriodicalIF":2.2,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71512829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protection Techniques using Resource Delayed Release for SDN-based OTN over WDM Networks","authors":"Shideh Yavary Mehr , Byrav Ramamurthy","doi":"10.1016/j.osn.2023.100762","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100762","url":null,"abstract":"<div><p>The availability and reliability of optical backbone links are very important to ensure the efficient operation of the Internet. To address the issue of data loss due to optical link<span> failures, there is a need for an optimal recovery strategy so that the traffic can be rerouted on a backup path to the destination. This paper builds on top of our prior research efforts (Yavary Mehr et al., 2022; Zhou et al., 2017) which introduced the concept of Resource Delayed Release (RDR) by adding a new state called ”idle state” which begins when the channel has completed carrying its services so that the next request can be carried immediately instead of waiting for a new channel to be established. While RDR improves the network performance by reducing the service provisioning time and blocking probability<span>, it does not handle link failures which are quite common in optical networks. Therefore, enhancing RDR with protection strategies will make the network more reliable and thus we investigate this topic in this work.</span></span></p><p><span>In this paper, we evaluate four different protection methods for single link failure recovery in WDM networks (Path Protection (PP), Partial Path Protection (PPP), Segment Protection (SegP) and </span>Link Protection<span> (LP)) with two different routing approaches namely Shortest Path (SPath) and Greedy (G) algorithm under uniform and non-uniform traffic generated using real traffic traces collected from a local Internet Service Provider (ISP). Special attention while evaluating these protection strategies was paid to the optimization of the amount of remaining bandwidth. The performance evaluation of the network under uniform and non-uniform traffic was done over the NSFNet and COST239 topologies by employing the metrics of link and network utilization, Blocking Probability (BP), Bandwidth Blocking Probability (BBP), Recovery Time (RT) and Service Provisioning Time (SPT). Our results show that the PPP method performs the best in terms of reducing BP, BBP, and SPT compared with PP, LP, and SegP in all three topologies while utilizing RDR.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100762"},"PeriodicalIF":2.2,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49755747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Ottino, Joshua Benjamin , Georgios Zervas
{"title":"RAMP: A flat nanosecond optical network and MPI operations for distributed deep learning systems","authors":"Alessandro Ottino, Joshua Benjamin , Georgios Zervas","doi":"10.1016/j.osn.2023.100761","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100761","url":null,"abstract":"<div><p><span><span>Distributed deep learning (DDL) systems strongly depend on network performance. Current electronic packet switched (EPS) network architectures and technologies suffer from variable diameter topologies, low-bisection bandwidth and over-subscription affecting completion time of communication and collective operations. We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-hop, all-optical </span>network architecture<span><span> with nanosecond reconfiguration called RAMP, which supports large-scale distributed and parallel computing systems (12.8 Tbps per node for up to 65,536 nodes). For the first time, a custom RAMP-x </span>MPI strategy and a network transcoder is proposed to run MPI collective operations across the optical circuit switched (OCS) network in a schedule-less and contention-less manner. RAMP achieves 7.6-171</span></span><span><math><mo>×</mo></math></span> speed-up in completion time across all MPI operations compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-16<span><math><mo>×</mo></math></span> and 7.8-58<span><math><mo>×</mo></math></span> reduction in Megatron and DLRM training time respectively while offering 38-47<span><math><mo>×</mo></math></span> and 6.4-26.5<span><math><mo>×</mo></math></span> improvement in energy consumption and cost respectively.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"51 ","pages":"Article 100761"},"PeriodicalIF":2.2,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Traffic grooming for massive light-path blockages in D2D-enabled hybrid LiFi and WiFi networks","authors":"Xiaoqi Wang, Chaoqin Gan, Shibao Wu, Yitong Chen, Yixin Chen","doi":"10.1016/j.osn.2023.100754","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100754","url":null,"abstract":"<div><p><span>Hybrid light-fidelity (LiFi) and wireless-fidelity (WiFi) networks (HLWNets) provide a promising solution for the future indoor wireless communications<span><span>. This network structure faces the challenge of traffic congestion since LiFi links are prone to be blocked due to angular misalignment<span> and path obstruction while WiFi has limited capacity. In this paper, a novel network structure that enables device-to-device (D2D) technology in HLWNets is considered. Then, traffic grooming (TG) for D2D-enabled HLWNets with massive light-path blockages is researched. By jointly handling mode selection, user pairing, and resource allocation, TG is formulated as a joint </span></span>optimization problem. This can efficiently groom low-speed connections from WiFi onto high-capacity LiFi when massive light-path blockages occur, thus increasing network throughput. Next, a three-stage heuristic TG algorithm is developed to reduce the </span></span>computational complexity<span> required to solve the optimization problem. Finally, by simulation, the effectiveness of the proposed algorithm has been demonstrated. The simulation results indicate that the network throughput can be increased by up to 20% with the proposed algorithm. Besides, the proposed algorithm also has significant advantages in terms of Jain's fairness index and user satisfaction.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"50 ","pages":"Article 100754"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49754128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A zone-based optical intra-vehicle backbone network architecture with dynamic slot scheduling","authors":"Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata","doi":"10.1016/j.osn.2023.100753","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100753","url":null,"abstract":"<div><p>As Ethernet has a large bandwidth capacity, it is commonly proposed as a backbone for future intra-vehicle networks. However, satisfying the severe hardware reliability requirements of intra-vehicle networks while providing high-bandwidth and low latency by Ethernet may be costly. As a solution, we propose a novel optical intra-vehicle backbone network architecture<span> that may have a lower cost and higher reliability in terms of hardware when compared to Ethernet. However, unlike traditional optical Ethernet architectures, only a single master node has transmitter laser diodes in the backbone of our architecture, so the gateway nodes cannot generate and send packets to the backbone links directly. As the gateways cannot inform the master node and request a slot when they have a new packet to send, a slot scheduling algorithm<span> with polling is necessary to detect and transfer the new packets in the gateways, which may cause higher transmission delays compared to Ethernet. In this paper, we present our optical intra-vehicle backbone network architecture and propose two slot scheduling algorithms. We show that using a dynamic slot scheduling algorithm decreases packet delays<span> when compared to fixed periodic slot scheduling in our architecture. We also evaluate the total delays including traffic shaping and processing delays in an optical TSN Ethernet backbone architecture as a reference. We show that the extra delays due to slot scheduling in our architecture may be negligibly low when compared with traffic shaping and processing delays.</span></span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"50 ","pages":"Article 100753"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49759723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rearrangeability and repackability of a multicast wavelength-space-wavelength elastic optical network","authors":"Bey-Chi Lin","doi":"10.1016/j.osn.2023.100741","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100741","url":null,"abstract":"<div><p><span><span>Elastic optical networks (EONs) have been introduced to meet the demands of the rapidly growing Internet. These networks can efficiently keep up with the emerging bandwidth-hungry and highly dynamic services, and can </span>support multicast services using techniques like the path, tree or subtree methods. A multicast wavelength-space-wavelength (M-WSW) network is a </span>switching node architecture for EONs, which adopts the subtree method to support multicast connections. An M-WSW network consists of three node stages in which wavelength, space and wavelength switches are used, respectively. A nonblocking M-WSW network guarantees that any connection between a free input and a free output can always be realized, and studying the nonblockingness of a network has attracted much attention from researchers. Sufficient conditions, in terms of the number of middle space switches, for an M-WSW network to be strict-sense nonblocking (SNB) or wide-sense nonblocking (WSNB) were examined in an earlier study. It is known that SNB networks usually incur a higher hardware cost, for instance, the number of middle space switches, compared to WSNB, rearrangeably nonblocking (RNB), or repackably nonblocking (RPNB) networks. This paper studies the rearrangeability and repackability of M-WSW networks, and derives the sufficient and necessary conditions for an M-WSW network to be RNB (or RPNB). The results show that the derived sufficient conditions for being RNB (or RPNB) require significantly fewer middle switches for SNB and WSNB networks, and the RPNB results require fewer middle switches than those for RNB in most cases.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"50 ","pages":"Article 100741"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic multiple multicasts routing and wavelength assignment for realizing modified artificial fish model in mesh-based ONoC","authors":"Fei Gao , Cui Yu , Boyong Gao , Yawen Chen , Hao Zhang","doi":"10.1016/j.osn.2023.100744","DOIUrl":"https://doi.org/10.1016/j.osn.2023.100744","url":null,"abstract":"<div><p><span>Dynamic multiple multicasts widely exist in several applications of optical network-on-chip. However, there is no good solution for routing and wavelength assignment<span> for multiple multicasts in the mesh-based network. This paper proposes a new routing strategy based on a modified artificial fish swarm algorithm. The modified artificial fish model can support unicast and multicast in the mesh-based network. The routing and wavelength assignment for multiple multicasts can be solved based on this model. Then, we design a layer-based algorithm to assign wavelength for multiple multicasts, which can utilize wavelength and area resources more effectively. Simulation results show that our scheme works better than the other tree-based schemes regarding average </span></span>communication latency<span> and power consumption. In general, our modified artificial fish swarm algorithm provides a universal platform to study different aspects of routing and wavelength assignment in mesh-based ONoC.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"50 ","pages":"Article 100744"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49754167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}