Paleobiology最新文献

筛选
英文 中文
The structure of the nonmarine fossil record: predictions from a coupled stratigraphic–paleoecological model of a coastal basin 非海洋化石记录的结构:海岸盆地地层-古生态耦合模型的预测
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-03-30 DOI: 10.1017/pab.2022.5
Steven M. Holland
{"title":"The structure of the nonmarine fossil record: predictions from a coupled stratigraphic–paleoecological model of a coastal basin","authors":"Steven M. Holland","doi":"10.1017/pab.2022.5","DOIUrl":"https://doi.org/10.1017/pab.2022.5","url":null,"abstract":"Abstract. Presented here is a coupled model of the nonmarine fossil record, based on a geometric model of deposition, a random-branching model of evolution, and an ecological model based on an elevation gradient. This model provides testable predictions about the stratigraphy and fossil occurrences in coastal nonmarine settings under three scenarios of sea-level change. A slow relative rise in sea level causes a declining ratio of channel to floodplain deposits, plus changes in community composition that reflect an upward increase in elevation relative to sea level. A rapid relative rise in sea level drives increasing aggradation rates, decreases the ratio of channel to floodplain deposits, and triggers a shift from higher-elevation (more inland) to lower-elevation (more coastal) communities. A fall in sea level produces an unconformity, manifested by valleys separated by interfluves. The resumption of deposition following the sea-level fall causes an abrupt shift in community composition across the unconformity, reflecting the duration of the hiatus and the increased elevation relative to sea level. This produces a cluster of first and last occurrences at the unconformity, and it is the only sequence-stratigraphic source of such clusters in a nonmarine system, in contrast to the multiple mechanisms for generating these clusters in marine systems. A central prediction of these models is that the nonmarine fossil record preserves systematic changes in community composition that reflect elevation (or equivalently, distance from shore). Diagnosing these gradients in ancient systems is a promising avenue of future research.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"372 - 396"},"PeriodicalIF":2.7,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42495523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Scale dependence of drilling predation in the Holocene of the northern Adriatic Sea across benthic habitats and nutrient regimes 亚得里亚海北部全新世底栖生物栖息地和营养状况对钻井捕食的尺度依赖性
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-03-29 DOI: 10.1017/pab.2022.6
M. Zuschin, Rafał Nawrot, M. Dengg, I. Gallmetzer, A. Haselmair, Sandra Wurzer, A. Tomašovỳch
{"title":"Scale dependence of drilling predation in the Holocene of the northern Adriatic Sea across benthic habitats and nutrient regimes","authors":"M. Zuschin, Rafał Nawrot, M. Dengg, I. Gallmetzer, A. Haselmair, Sandra Wurzer, A. Tomašovỳch","doi":"10.1017/pab.2022.6","DOIUrl":"https://doi.org/10.1017/pab.2022.6","url":null,"abstract":"Abstract. Predation has strongly shaped past and modern marine ecosystems, but the scale dependency of patterns in drilling predation, the most widely used proxy for predator–prey interactions in the fossil record, is a matter of debate. To assess the effects of spatial and taxonomic scale on temporal trends in the drilling frequencies (DFs), we analyzed Holocene molluscan assemblages of different benthic habitats and nutrient regimes from the northern Adriatic shelf in a sequence-stratigraphic context. Although it has been postulated that low predation pressures facilitated the development of high-biomass epifaunal communities in the eastern, relatively oligotrophic portion of the northern Adriatic shelf, DFs reaching up to 30%–40% in the studied assemblage show that drilling predation levels are comparable to those typical of late Cenozoic ecosystems. DFs tend to increase from the transgressive systems tract (TST) into the highstand systems tract (HST) at the local scale, reflecting an increase in water depth by 20–40 m and a shift from infralittoral to circalittoral habitats over the past 10,000 years. As transgressive deposits are thicker at shallower locations and highstand deposits are thicker at deeper locations, a regional increase in DFs from TST to HST is evident only when these differences are accounted for. The increase in DF toward the HST can be recognized at the level of total assemblages, classes, and few abundant and widespread families, but it disappears at the level of genera and species because of their specific environmental requirements, leading to uneven or patchy distribution in space and time.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"462 - 479"},"PeriodicalIF":2.7,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47700931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction 机器学习识别二叠纪末大灭绝期间的生态选择性模式
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-03-01 DOI: 10.1017/pab.2022.1
W. Foster, G. Ayzel, Jannes Munchmeyer, Tabea Rettelbach, Niklas H. Kitzmann, T. Isson, M. Mutti, M. Aberhan
{"title":"Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction","authors":"W. Foster, G. Ayzel, Jannes Munchmeyer, Tabea Rettelbach, Niklas H. Kitzmann, T. Isson, M. Mutti, M. Aberhan","doi":"10.1017/pab.2022.1","DOIUrl":"https://doi.org/10.1017/pab.2022.1","url":null,"abstract":"Abstract. The end-Permian mass extinction occurred alongside a large swath of environmental changes that are often invoked as extinction mechanisms, even when a direct link is lacking. One way to elucidate the cause(s) of a mass extinction is to investigate extinction selectivity, as it can reveal critical information on organismic traits as key determinants of extinction and survival. Here we show that machine learning algorithms, specifically gradient boosted decision trees, can be used to identify determinants of extinction as well as to predict extinction risk. To understand which factors led to the end-Permian mass extinction during an extreme global warming event, we quantified the ecological selectivity of marine extinctions in the well-studied South China region. We find that extinction selectivity varies between different groups of organisms and that a synergy of multiple environmental stressors best explains the overall end-Permian extinction selectivity pattern. Extinction risk was greater for genera that had a low species richness, narrow bathymetric ranges limited to deep-water habitats, a stationary mode of life, a siliceous skeleton, or, less critically, calcitic skeletons. These selective losses directly link the extinctions to the environmental effects of rapid injections of carbon dioxide into the ocean–atmosphere system, specifically the combined effects of expanded oxygen minimum zones, rapid warming, and potentially ocean acidification.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"357 - 371"},"PeriodicalIF":2.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43434696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
PAB volume 48 issue 1 Cover and Front matter PAB第48卷第1期封面和封面问题
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-02-01 DOI: 10.1017/pab.2022.8
{"title":"PAB volume 48 issue 1 Cover and Front matter","authors":"","doi":"10.1017/pab.2022.8","DOIUrl":"https://doi.org/10.1017/pab.2022.8","url":null,"abstract":"","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"f1 - f2"},"PeriodicalIF":2.7,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47390694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sponge pump as a morphological character in the fossil record 海绵泵是化石记录中的一种形态特征
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-31 DOI: 10.1017/pab.2021.43
Pablo Aragonés Suárez, S. Leys
{"title":"The sponge pump as a morphological character in the fossil record","authors":"Pablo Aragonés Suárez, S. Leys","doi":"10.1017/pab.2021.43","DOIUrl":"https://doi.org/10.1017/pab.2021.43","url":null,"abstract":"Abstract. The timing of early animal evolution remains one of the biggest conundrums in biology. Molecular data suggest Porifera diverged from the metazoan lineage some 800 Ma to 650 Ma, which contrasts with the earliest widely accepted fossils of sponges at 535 Ma. However, the lack of criteria by which to recognize the earliest animals in the fossil record presents a challenge. The sponge body plan is unchanged since the early Cambrian, which makes a sponge-type animal a good candidate for the earliest fossils. Here we propose a method for identifying an organism as sponge grade by translating the sponge pump character into a quantifiable morphological trait. We show that the ratio between the two major components of the aquiferous system, the cross-sectional area of the osculum (OSA) and the surface area of the whole sponge (SA), is an effective metric of the pump character of extant sponges and that the slope of this ratio is distinct for three classes of Porifera: Demospongiae, Calcarea, and Hexactinellida. Furthermore, this metric is effective at distinguishing as sponges both extant taxa and fossils from two extremes of the Phanerozoic, the Cambrian and Paleogene. We tested this metric on the putative Ediacaran sponge Thectardis avalonensis from Mistaken Point, Newfoundland, and found Thectardis fits both with Cambrian sponges and with modern demosponges. These analyses show that the OSA/SA ratio is a reliable character by which to identify fossils as sponge grade, opening up exciting possibilities for classifying new fossils as sponges.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"446 - 461"},"PeriodicalIF":2.7,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44311787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian 了解泥盆纪异孢子虫的出现及其衍生的植物繁殖策略
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-28 DOI: 10.1017/pab.2021.44
A. Leslie, Nikole Bonacorsi
{"title":"Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian","authors":"A. Leslie, Nikole Bonacorsi","doi":"10.1017/pab.2021.44","DOIUrl":"https://doi.org/10.1017/pab.2021.44","url":null,"abstract":"Abstract. The evolution of different spore size classes, or heterospory, is a fundamental reproductive innovation in land plants. The appearance of heterospory is particularly notable during the Devonian, when most known origins of the trait occur. Here we provide a perspective on the evolution of heterospory during this time interval, particularly from the late Early Devonian through the Middle Devonian (Emsian to Givetian Stages; 408–383 Ma), which shows an unusually high concentration of heterospory origins. We use theoretical considerations and compilations of fossil and extant spore sizes to suggest that the basic features of most heterosporous lineages, large spores and gametophytes that mature within the spore wall, are difficult to evolve in combination, because large spores disperse poorly but small spores cannot support a functional gametophyte developing within their walls; evolving spores between 100 and 200 microns in diameter appears to represent a particularly important barrier for the evolution of heterospory. We then discuss why this barrier may have been lower in the Devonian, noting that the appearance and spread of heterospory is coincident with the emergence of peat-accumulating wetland habitats. We suggest that more widespread wetland habitats would have generally lowered barriers to the evolution of heterospory by reducing dispersal limitation in larger spores. Ultimately, we suggest that the initial evolution of heterospory may be explained by major changes in sedimentology, thought to have been driven by plant evolution itself, that increased the diversity of terrestrial depositional environments and led to a greater number of habitats where large spores could be successful.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"496 - 512"},"PeriodicalIF":2.7,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44860900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A biased fossil record can preserve reliable phylogenetic signal 有偏见的化石记录可以保存可靠的系统发育信号
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-28 DOI: 10.1017/pab.2021.45
C. Woolley, J. Thompson, Y. Wu, D. Bottjer, N. Smith
{"title":"A biased fossil record can preserve reliable phylogenetic signal","authors":"C. Woolley, J. Thompson, Y. Wu, D. Bottjer, N. Smith","doi":"10.1017/pab.2021.45","DOIUrl":"https://doi.org/10.1017/pab.2021.45","url":null,"abstract":"Abstract. The fossil record is notoriously imperfect and biased in representation, hindering our ability to place fossil specimens into an evolutionary context. For groups with fossil records mostly consisting of disarticulated parts (e.g., vertebrates, echinoderms, plants), the limited morphological information preserved sparks concerns about whether fossils retain reliable evidence of phylogenetic relationships and lends uncertainty to analyses of diversification, paleobiogeography, and biostratigraphy in Earth's history. To address whether a fragmentary past can be trusted, we need to assess whether incompleteness affects the quality of phylogenetic information contained in fossil data. Herein, we characterize skeletal incompleteness bias in a large dataset (6585 specimens; 14,417 skeletal elements) of fossil squamates (lizards, snakes, amphisbaenians, and mosasaurs). We show that jaws + palatal bones, vertebrae, and ribs appear more frequently in the fossil record than other parts of the skeleton. This incomplete anatomical representation in the fossil record is biased against regions of the skeleton that contain the majority of morphological phylogenetic characters used to assess squamate evolutionary relationships. Despite this bias, parsimony- and model-based comparative analyses indicate that the most frequently occurring parts of the skeleton in the fossil record retain similar levels of phylogenetic signal as parts of the skeleton that are rarer. These results demonstrate that the biased squamate fossil record contains reliable phylogenetic information and support our ability to place incomplete fossils in the tree of life.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"480 - 495"},"PeriodicalIF":2.7,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41777264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas 寒武纪信息革命的显生宙后果:海洋动物的感官和认知复杂性
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-28 DOI: 10.1017/pab.2021.46
Shannon Hsieh, R. Plotnick, Andrew M. Bush
{"title":"The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas","authors":"Shannon Hsieh, R. Plotnick, Andrew M. Bush","doi":"10.1017/pab.2021.46","DOIUrl":"https://doi.org/10.1017/pab.2021.46","url":null,"abstract":"Abstract. The Cambrian information revolution describes how biotically driven increases in signals, sensory abilities, behavioral interactions, and landscape spatial complexity drove a rapid increase in animal cognition concurrent with the Cambrian radiation. Here, we compare cognitive complexity in Cambrian and post-Cambrian marine ecosystems, documenting changes in animal cognition after the initial Cambrian increase. In a comparison of Cambrian and post-Cambrian Lagerstätten, we find no strong trend in the proportion of genera possessing two types of macroscopic sense organs (eyes and chemoreceptive organs such as antennae, feelers, or nostrils). There is also no trend in general nervous system complexity. These results suggest that sophisticated information processing was already common in early Phanerozoic ecosystems, comparable with behavioral evidence from the trace fossil record. Most taxa capable of complex information processing in Cambrian ecosystems were panarthropods, whereas mollusks and chordates made up larger proportions afterward. In both the Cambrian and the present day, ecological occupation of diverse habitat tiers and feeding modes is possible with even simple nervous systems, but ecological lifestyles requiring rapid, regular movement are almost exclusively associated within brain-bearing taxa, suggesting a connection with fast information-processing abilities and bodily responses. The overall rise in cognitive sophistication in the Cambrian was likely a unique event in the history of life, although some lineages subsequently developed more elaborate sensory systems and/or larger brains.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"397 - 419"},"PeriodicalIF":2.7,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41353624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Bivalve body-size distribution through the Late Triassic mass extinction event 三叠纪晚期大灭绝事件中双阀体的大小分布
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-26 DOI: 10.1017/pab.2021.38
L. Opazo, R. Twitchett
{"title":"Bivalve body-size distribution through the Late Triassic mass extinction event","authors":"L. Opazo, R. Twitchett","doi":"10.1017/pab.2021.38","DOIUrl":"https://doi.org/10.1017/pab.2021.38","url":null,"abstract":"Abstract. The synergic relationship between physiology, ecology, and evolutionary process makes the body-size distribution (BSD) an essential component of the community ecology. Body size is highly susceptible to environmental change, and extreme upheavals, such as during a mass extinction event, could exert drastic changes on a taxon's BSD. It has been hypothesized that the Late Triassic mass extinction event (LTE) was triggered by intense global warming, linked to massive volcanic activity associated with the Central Atlantic Magmatic Province. We test the effects of the LTE on the BSD of fossil bivalve assemblages from three study sites spanning the Triassic/Jurassic boundary in the United Kingdom. Our results show that the effects of the LTE were rapid and synchronous across sites, and the BSDs of the bivalves record drastic changes associated with species turnover. No phylogenetic signal of size selectivity was recorded, although semi-infaunal species were apparently most susceptible to change. Each size class had the same likelihood of extinction during the LTE, which resulted in a platykurtic BSD with negative skew. The immediate postextinction assemblage exhibits a leptokurtic BSD, although with negative skew, wherein surviving species and newly appearing small-sized colonizers exhibit body sizes near the modal size. Recovery was relatively rapid (∼100 kyr), and larger bivalves began to appear during the pre-Planorbis Zone, despite recurrent dysoxic/anoxic conditions. This study demonstrates how a mass extinction acts across the size spectrum in bivalves and shows how BSDs emerge from evolutionary and ecological processes.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"420 - 445"},"PeriodicalIF":2.7,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42953223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ediacara growing pains: Modular addition and development in Dickinsonia costata. Ediacara生长的烦恼:Dickinsonia costata的模加法和发展。
IF 2.7 2区 地球科学
Paleobiology Pub Date : 2022-01-01 Epub Date: 2021-09-13 DOI: 10.1017/pab.2021.31
Scott D Evans, James G Gehling, Douglas H Erwin, Mary L Droser
{"title":"Ediacara growing pains: Modular addition and development in <i>Dickinsonia costata</i>.","authors":"Scott D Evans,&nbsp;James G Gehling,&nbsp;Douglas H Erwin,&nbsp;Mary L Droser","doi":"10.1017/pab.2021.31","DOIUrl":"https://doi.org/10.1017/pab.2021.31","url":null,"abstract":"<p><p>Constraining patterns of growth using directly observable and quantifiable characteristics can reveal a wealth of information regarding the biology of the Ediacara Biota - the oldest macroscopic, complex community forming organisms in the fossil record. However, these rely on individuals captured at an instant in time at various growth stages, and so different interpretations can be derived from the same material. Here we leverage newly discovered and well-preserved <i>Dickinsonia costata</i> Sprigg 1947 from South Australia, combined with hundreds of previously described specimens, to test competing hypotheses for the location of module addition. We find considerable variation in the relationship between the total number of modules and body size that cannot be explained solely by expansion and contraction of individuals. Patterns derived assuming new modules differentiated at the anterior result in numerous examples where the oldest module(s) must decrease in size with overall growth, potentially falsifying this hypothesis. Observed polarity as well as the consistent posterior location of defects and indentations support module formation at this end in <i>D. costata</i>. Regardless, changes in repeated units with growth share similarities with those regulated by morphogen gradients in metazoans today, suggesting that these genetic pathways were operating in Ediacaran animals.</p>","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"97 ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740542/pdf/nihms-1746282.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39660432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信