{"title":"The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas","authors":"Shannon Hsieh, R. Plotnick, Andrew M. Bush","doi":"10.1017/pab.2021.46","DOIUrl":null,"url":null,"abstract":"Abstract. The Cambrian information revolution describes how biotically driven increases in signals, sensory abilities, behavioral interactions, and landscape spatial complexity drove a rapid increase in animal cognition concurrent with the Cambrian radiation. Here, we compare cognitive complexity in Cambrian and post-Cambrian marine ecosystems, documenting changes in animal cognition after the initial Cambrian increase. In a comparison of Cambrian and post-Cambrian Lagerstätten, we find no strong trend in the proportion of genera possessing two types of macroscopic sense organs (eyes and chemoreceptive organs such as antennae, feelers, or nostrils). There is also no trend in general nervous system complexity. These results suggest that sophisticated information processing was already common in early Phanerozoic ecosystems, comparable with behavioral evidence from the trace fossil record. Most taxa capable of complex information processing in Cambrian ecosystems were panarthropods, whereas mollusks and chordates made up larger proportions afterward. In both the Cambrian and the present day, ecological occupation of diverse habitat tiers and feeding modes is possible with even simple nervous systems, but ecological lifestyles requiring rapid, regular movement are almost exclusively associated within brain-bearing taxa, suggesting a connection with fast information-processing abilities and bodily responses. The overall rise in cognitive sophistication in the Cambrian was likely a unique event in the history of life, although some lineages subsequently developed more elaborate sensory systems and/or larger brains.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"397 - 419"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2021.46","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract. The Cambrian information revolution describes how biotically driven increases in signals, sensory abilities, behavioral interactions, and landscape spatial complexity drove a rapid increase in animal cognition concurrent with the Cambrian radiation. Here, we compare cognitive complexity in Cambrian and post-Cambrian marine ecosystems, documenting changes in animal cognition after the initial Cambrian increase. In a comparison of Cambrian and post-Cambrian Lagerstätten, we find no strong trend in the proportion of genera possessing two types of macroscopic sense organs (eyes and chemoreceptive organs such as antennae, feelers, or nostrils). There is also no trend in general nervous system complexity. These results suggest that sophisticated information processing was already common in early Phanerozoic ecosystems, comparable with behavioral evidence from the trace fossil record. Most taxa capable of complex information processing in Cambrian ecosystems were panarthropods, whereas mollusks and chordates made up larger proportions afterward. In both the Cambrian and the present day, ecological occupation of diverse habitat tiers and feeding modes is possible with even simple nervous systems, but ecological lifestyles requiring rapid, regular movement are almost exclusively associated within brain-bearing taxa, suggesting a connection with fast information-processing abilities and bodily responses. The overall rise in cognitive sophistication in the Cambrian was likely a unique event in the history of life, although some lineages subsequently developed more elaborate sensory systems and/or larger brains.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.