{"title":"Bivalve body-size distribution through the Late Triassic mass extinction event","authors":"L. Opazo, R. Twitchett","doi":"10.1017/pab.2021.38","DOIUrl":null,"url":null,"abstract":"Abstract. The synergic relationship between physiology, ecology, and evolutionary process makes the body-size distribution (BSD) an essential component of the community ecology. Body size is highly susceptible to environmental change, and extreme upheavals, such as during a mass extinction event, could exert drastic changes on a taxon's BSD. It has been hypothesized that the Late Triassic mass extinction event (LTE) was triggered by intense global warming, linked to massive volcanic activity associated with the Central Atlantic Magmatic Province. We test the effects of the LTE on the BSD of fossil bivalve assemblages from three study sites spanning the Triassic/Jurassic boundary in the United Kingdom. Our results show that the effects of the LTE were rapid and synchronous across sites, and the BSDs of the bivalves record drastic changes associated with species turnover. No phylogenetic signal of size selectivity was recorded, although semi-infaunal species were apparently most susceptible to change. Each size class had the same likelihood of extinction during the LTE, which resulted in a platykurtic BSD with negative skew. The immediate postextinction assemblage exhibits a leptokurtic BSD, although with negative skew, wherein surviving species and newly appearing small-sized colonizers exhibit body sizes near the modal size. Recovery was relatively rapid (∼100 kyr), and larger bivalves began to appear during the pre-Planorbis Zone, despite recurrent dysoxic/anoxic conditions. This study demonstrates how a mass extinction acts across the size spectrum in bivalves and shows how BSDs emerge from evolutionary and ecological processes.","PeriodicalId":54646,"journal":{"name":"Paleobiology","volume":"48 1","pages":"420 - 445"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleobiology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2021.38","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract. The synergic relationship between physiology, ecology, and evolutionary process makes the body-size distribution (BSD) an essential component of the community ecology. Body size is highly susceptible to environmental change, and extreme upheavals, such as during a mass extinction event, could exert drastic changes on a taxon's BSD. It has been hypothesized that the Late Triassic mass extinction event (LTE) was triggered by intense global warming, linked to massive volcanic activity associated with the Central Atlantic Magmatic Province. We test the effects of the LTE on the BSD of fossil bivalve assemblages from three study sites spanning the Triassic/Jurassic boundary in the United Kingdom. Our results show that the effects of the LTE were rapid and synchronous across sites, and the BSDs of the bivalves record drastic changes associated with species turnover. No phylogenetic signal of size selectivity was recorded, although semi-infaunal species were apparently most susceptible to change. Each size class had the same likelihood of extinction during the LTE, which resulted in a platykurtic BSD with negative skew. The immediate postextinction assemblage exhibits a leptokurtic BSD, although with negative skew, wherein surviving species and newly appearing small-sized colonizers exhibit body sizes near the modal size. Recovery was relatively rapid (∼100 kyr), and larger bivalves began to appear during the pre-Planorbis Zone, despite recurrent dysoxic/anoxic conditions. This study demonstrates how a mass extinction acts across the size spectrum in bivalves and shows how BSDs emerge from evolutionary and ecological processes.
期刊介绍:
Paleobiology publishes original contributions of any length (but normally 10-50 manuscript pages) dealing with any aspect of biological paleontology. Emphasis is placed on biological or paleobiological processes and patterns, including macroevolution, extinction, diversification, speciation, functional morphology, bio-geography, phylogeny, paleoecology, molecular paleontology, taphonomy, natural selection and patterns of variation, abundance, and distribution in space and time, among others. Taxonomic papers are welcome if they have significant and broad applications. Papers concerning research on recent organisms and systems are appropriate if they are of particular interest to paleontologists. Papers should typically interest readers from more than one specialty. Proposals for symposium volumes should be discussed in advance with the editors.