Permafrost and Periglacial Processes最新文献

筛选
英文 中文
Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review 野火对北方冻土区土壤有机碳的影响:综述
IF 3 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-08-09 DOI: 10.1002/ppp.2247
Xiaoying Li, Long Sun, Yilun Han
{"title":"Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review","authors":"Xiaoying Li, Long Sun, Yilun Han","doi":"10.1002/ppp.2247","DOIUrl":"https://doi.org/10.1002/ppp.2247","url":null,"abstract":"Wildfire strongly influences permafrost environment and soil organic carbon (SOC) pool. In this study, we reviewed the effects of fire severity, time after a fire, and frequency on SOC in boreal permafrost regions. This review highlighted several key points: the effect of wildfires on SOC increased with an increase of fire severity, and the amount of vegetation returned and surface organic matter replenished was less in a short term, which resulted in a significantly lower SOC content compared to that of before the fire. Within a short period after fire, the SOC in near‐surface permafrost and the active layer decreased significantly due to the loss of above ground biomass, permafrost thaw, and increased microbial decomposition; as the years pass after a fire, the SOC gradually accumulates due to the contributions of litter layer accumulation and rooting systems from different stages of succession. The increase in fire frequency accelerated permafrost thawing and the formation of thermokarst, resulting in the rapid release of a large amount of soil carbon and reduced SOC storage. Therefore, the study on the effects of wildfires on SOC in the boreal permafrost region is of great significance to understanding and quantifying the carbon balance of the ecosystem.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring 巴塔盖耶多玛冰楔中的同步同位素曲线:精确匹配和相似性评分
IF 3 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-08-08 DOI: 10.1002/ppp.2243
Y. Vasil'chuk, A. Vasil'chuk, N. Budantseva, J. Vasil’chuk, Alexander P Ginzburg
{"title":"Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring","authors":"Y. Vasil'chuk, A. Vasil'chuk, N. Budantseva, J. Vasil’chuk, Alexander P Ginzburg","doi":"10.1002/ppp.2243","DOIUrl":"https://doi.org/10.1002/ppp.2243","url":null,"abstract":"The purpose of the study is to compare the results of the stable isotope analysis (δ18O, δ2H, and deuterium excess values) of parallel and synchronous ice wedges exposed in one outcrop in the upper part of the Batagay Yedoma (67.58° N, 134.77° E) and to estimate their precision, that is, a measure of similarity of independent isotope results of two ice wedges. Detailed sampling of two syngenetic ice wedges (IW‐17 and IW‐20) for isotope analysis was carried out in the exposure of the thermo‐erosional ravine in the southeastern part of the Batagay megaslump. In total, results of 105 measurements for IW‐17 and 59 measurements for IW‐20 were obtained. According to 14C AMS ages of organic microinclusions in the ice‐wedge ice, the studied ice wedges began to form no later than 42 cal ka BP. The termination of their growth was dated to about 11.7 cal ka BP. For both ice wedges, generally low isotope values were obtained. For the IW‐17, the mean values are −34.38‰ for δ18O, −264.82‰ for δ2H, and 10.2‰ for dexc. For IW‐20, the mean isotope values are −34.09‰ for δ18O, −262.91‰ for δ2H, and 9.84‰ for dexc. Statistical tests showed significant correlations between the isotope data in the upper parts of ice wedges that may be explained by similar conditions during their growth at this stage. Our results allow us to refine the solutions to the two main issues studied of the Late Pleistocene Yedoma: the age of the ice wedges, the accuracy of the isotope profiles, and the paleotemperature interpretation of the isotope records.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity of Permafrost Degradation to Geological and Climatic Conditions 永冻土退化对地质和气候条件的敏感性
IF 3 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-07-10 DOI: 10.1002/ppp.2245
Lei Guo, Y. Ran, Xin Li, Huijun Jin, Guodong Cheng
{"title":"Sensitivity of Permafrost Degradation to Geological and Climatic Conditions","authors":"Lei Guo, Y. Ran, Xin Li, Huijun Jin, Guodong Cheng","doi":"10.1002/ppp.2245","DOIUrl":"https://doi.org/10.1002/ppp.2245","url":null,"abstract":"Permafrost degradation varies spatially; however, the underlying mechanism remains partially unclear. In this study, we predicted permafrost variation under the influence of climate change to investigate the sensitivity of permafrost degradation to geological and climatic conditions. The results revealed that geological strata can strongly impact the permafrost degradation process. Mainly due to the greater thermal conductivity of sandy gravel in the Arctic, the complete thaw of permafrost will be greatly delayed by more than 160 years compared with that on the Qinghai–Tibet Plateau (QTP). Climatic conditions, such as snow depth, can also greatly affect the degradation process of permafrost: The thaw of permafrost will be delayed by more than 140 years when the snow depth decreases from 0.7 to 0.1 m. Peat soil thickness at ground surface can also affect permafrost degradation. The permafrost temperature increases as peat soil thickens when the thickness is less than 1.0 m, whereas there is a critical peat soil thickness (approximately 0.2 and 0.5 m on the QTP and in the Arctic, respectively) under which permafrost will thaw at the fastest rate. The findings highlight the influence of geology and climate over permafrost degradation.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141660330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia 东西伯利亚巴塔盖巨型塌陷区两个冰复合体温室气体形成的生物地球化学研究
IF 3 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-07-04 DOI: 10.1002/ppp.2234
Hansu Park, Nayeon Ko, JeongEun Kim, T. Opel, H. Meyer, S. Wetterich, Alexander Fedorov, A. G. Shepelev, Hyejung Jung, Jinho Ahn
{"title":"A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia","authors":"Hansu Park, Nayeon Ko, JeongEun Kim, T. Opel, H. Meyer, S. Wetterich, Alexander Fedorov, A. G. Shepelev, Hyejung Jung, Jinho Ahn","doi":"10.1002/ppp.2234","DOIUrl":"https://doi.org/10.1002/ppp.2234","url":null,"abstract":"Rapidly changing permafrost landscapes are a potential key terrestrial source of greenhouse gases (GHGs) at a global scale, yet, remain poorly characterized regarding GHG origins and environmental controls on emissions. Subsurface ice wedges, commonly found across many permafrost landscapes, harbor GHG‐rich gas bubbles. Analyzing these bubbles aids comprehension of subzero temperature GHG formation in permafrost. The Batagay megaslump, Earth's largest known thaw slump in northern Yakutia, provides an opportunity to study mixing ratios and isotopic compositions of both GHGs and non‐GHG in ice wedge samples from two stratigraphic units: the Upper Ice Complex (UIC) and the Lower Ice Complex (LIC). The Ar/N2/O2 compositions and bubble shapes indicated that the studied ice wedges were likely formed through dry snow and/or hoarfrost compaction, and microbial activity remained active after ice wedge formation. The high CO2 and CH4 mixing ratios and carbon stable isotope values suggested that CO2 and CH4 primarily originated from microbial sources. N2O showed an “exclusive relation” with CH4—meaning that high N2O is observed only when CH4 is low, and vice versa—and N2O mixing ratios vary at different depths. These findings suggest that GHG formation in ice wedges is not solely controlled by physiochemical conditions, but involves a complex interplay between microbial activity and environmental conditions. Our study contributes to a better understanding of the dynamics involved in GHG formation within degrading permafrost landscapes.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141677915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic 捷克共和国波希米亚中北部残余霜楔的光刺激发光年龄及其古环境意义
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-06-07 DOI: 10.1002/ppp.2241
Tomáš Uxa, M. Křížek, David Krause, P. Moska, J. Murton
{"title":"Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic","authors":"Tomáš Uxa, M. Křížek, David Krause, P. Moska, J. Murton","doi":"10.1002/ppp.2241","DOIUrl":"https://doi.org/10.1002/ppp.2241","url":null,"abstract":"Relict frost wedges are widespread and valuable indicators of past environmental conditions that have been extensively dated across central and western European lowlands over the past few decades, but their timing in the Czech Republic is poorly known. Here, we present optically‐stimulated‐luminescence (OSL) ages for seven relict frost wedges situated at four study sites in north–central Bohemia, Czech Republic (49.9992–50.4956°N, 13.3736–16.0011°E, 230–350 m above sea level). The OSL ages indicate that the frost wedges developed during two phases in marine isotope stage 2: an older phase that peaked at 23.6 ± 2.9 ka and a younger phase that peaked at 16.1 ± 1.3 ka. Both phases probably experienced cold, dry and windy conditions that were mostly associated with <0°C mean annual air and ground temperatures and the presence of at least discontinuous permafrost, which is in line with similar central and western European records and other paleo‐environmental archives. The new OSL ages constitute the first extended dataset on the timing of frost wedges in this undersampled area between the Fennoscandian and Alpine ice sheets, which is essential for reconstructing past permafrost extents and climate conditions, as well as for validating models of past permafrost dynamics in central Europe.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur Isotope Geochemistry of Ice‐Wedges in Yakutia, East Siberia 东西伯利亚雅库特冰原的硫同位素地球化学
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-05-24 DOI: 10.1002/ppp.2233
Hyeonjeong Jeong, Jonghan Moon, G. Iwahana, Alexander Fedorov, Jinho Ahn, Min Sub Sim
{"title":"Sulfur Isotope Geochemistry of Ice‐Wedges in Yakutia, East Siberia","authors":"Hyeonjeong Jeong, Jonghan Moon, G. Iwahana, Alexander Fedorov, Jinho Ahn, Min Sub Sim","doi":"10.1002/ppp.2233","DOIUrl":"https://doi.org/10.1002/ppp.2233","url":null,"abstract":"Sulfur, with its highly varying stable isotope ratio and involvement in numerous biogeochemical processes, is one of the most widely used elements as an isotopic paleoenvironmental proxy, yet the sulfur isotope ratios of ice‐wedges and their insoluble fraction remain unexplored. This study first presents the sulfur isotopic compositions of soluble sulfate, particulate organic matter (POM), and lithic particles recovered from East Siberian ice‐wedges. Soluble sulfate, primarily representing atmospheric sulfate deposition, shows comparable sulfur isotope ranges in Zyryanka and Batagay, while in Central Yakutia, ice‐wedge sulfate is more enriched in 34S, consistent with the orogenic and cratonic terranes in East Siberia. Given the wedge growth during the inland winter, it is likely that sulfate aerosols were derived mainly from erosion and weathering of regional basement rocks rather than from sea salt spray or biogenic emissions. Within individual ice‐wedges, however, the sulfur isotopic composition of soluble sulfate varies by as much as 7‰, possibly reflecting changes in the relative contributions of sulfur‐isotopically distinct source regions. Beyond the origin of sulfate, greater sulfur isotope fractionations between POM and sulfate during the last glaciation suggest that sulfate may have been anaerobically reduced to sulfide and vice versa in the adjacent root zone.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causes and Processes of Thermo‐Erosional Gully Initiation Near Tiksi Settlement, Arctic Eastern Siberia 东西伯利亚北极地区提克希定居点附近热侵蚀沟壑形成的原因和过程
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-05-22 DOI: 10.1002/ppp.2229
A. Tarbeeva, Ya. V. Tikhonravova, Lyudmila Lebedeva, Anna Kut, Vladimir Shamov
{"title":"Causes and Processes of Thermo‐Erosional Gully Initiation Near Tiksi Settlement, Arctic Eastern Siberia","authors":"A. Tarbeeva, Ya. V. Tikhonravova, Lyudmila Lebedeva, Anna Kut, Vladimir Shamov","doi":"10.1002/ppp.2229","DOIUrl":"https://doi.org/10.1002/ppp.2229","url":null,"abstract":"Climatic and environmental change is leading to increased frequency and intensity of permafrost degradation processes; however, our knowledge of their mechanisms and rate is still limited. We examined structure of deposits, surface topography, and weather conditions during the initiation of a thermo‐erosion gully in eastern Siberia and monitored its changes between 2020 and 2022. The initiation of the gully was caused by a combination of processes: (1) the catchment area of the gully was artificially increased several decades ago as a result of the interception of runoff by the winter road; (2) ice‐wedge degradation led to surface runoff concentration above the gully head, while a large volume of ground ice remained in other parts of the slope, and frost cracking continued; (3) the entry of water into frost cracks formed underground tunnels; and (4) high air temperatures and heavy rainfall immediately before the gully appearance resulted in the expansion of the tunnels and collapse of their roof. In 2 years, the volume of the gully reached 1000 m3; at least 40% of that volume consists of ground ice. The gully development did not significantly change the water chemistry due to significant water freshening caused by melting of ground ice.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooling Performance of a Novel Ventilated Slope on Railbed in Permafrost Regions 永冻地区铁路路基上新型通风斜坡的冷却性能
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-03-25 DOI: 10.1002/ppp.2222
Zhenyu Zhang, Zhi Wen, Youqian Liu, Xinbin Wang, Jinxin Lu, Kun Chen, Delong Zhang, Qihao Yu
{"title":"Cooling Performance of a Novel Ventilated Slope on Railbed in Permafrost Regions","authors":"Zhenyu Zhang, Zhi Wen, Youqian Liu, Xinbin Wang, Jinxin Lu, Kun Chen, Delong Zhang, Qihao Yu","doi":"10.1002/ppp.2222","DOIUrl":"https://doi.org/10.1002/ppp.2222","url":null,"abstract":"The heat absorption of the railbed mainly originates from the embankment slope in permafrost regions. A novel ventilated slope (NVS) with a double‐layer convection channel is proposed and verified. By applying this method to the Qinghai–Tibet Railway (QTR), the annual average temperature at the 10 cm depth below the embankment slope surface under NVS was reduced by 4.95°C. The freezing index at the 10 cm depth of NVS was 1.78 times higher than that of the slope without any cooling approaches. The numerical simulation results showed that heat was accumulated for the conventional embankment, while heat was released from the railbed after the application of NVS. With the cooling effect of NVS, the 0°C isotherm would rise above the original natural ground surface in the 2nd year after the embankment construction. A low‐temperature region of −2°C would be observed in the underlying permafrost by the 10th year. The underlying permafrost would remain frozen in the 50th year. This study provides a novel method for protecting the underlying permafrost in permafrost regions.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140383062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation, Monitoring, and Simulation of Permafrost on the Qinghai‐Tibet Plateau: A Review 青藏高原冻土调查、监测与模拟:综述
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-03-25 DOI: 10.1002/ppp.2227
Lin Zhao, G. Hu, Guang-yue Liu, D. Zou, Yuanwei Wang, Yao Xiao, E. Du, Chong Wang, Zanpin Xing, Zhe Sun, Yonghua Zhao, Shibo Liu, Yu-xin Zhang, Lingxiao Wang, Huayun Zhou, Jianting Zhao
{"title":"Investigation, Monitoring, and Simulation of Permafrost on the Qinghai‐Tibet Plateau: A Review","authors":"Lin Zhao, G. Hu, Guang-yue Liu, D. Zou, Yuanwei Wang, Yao Xiao, E. Du, Chong Wang, Zanpin Xing, Zhe Sun, Yonghua Zhao, Shibo Liu, Yu-xin Zhang, Lingxiao Wang, Huayun Zhou, Jianting Zhao","doi":"10.1002/ppp.2227","DOIUrl":"https://doi.org/10.1002/ppp.2227","url":null,"abstract":"The Qinghai‐Tibet Plateau (QTP) is the largest permafrost region in the world at low and middle latitudes and high elevation. Permafrost is being degraded on the QTP due to global warming, which has a significant effect on regional climate, hydrological, and ecological processes. This paper provides a summary of recent progress in methods used in permafrost research, the permafrost distribution, and basic data relevant to permafrost research on the QTP. The area of permafrost was 1.32 × 106 km2 over the QTP, which accounts for approximately 46% of the QTP. Moreover, simulation studies of the hydrothermal process and permafrost change were reviewed and evaluated the effect of permafrost degradation on hydrological and ecological processes. The results revealed that the effects of permafrost on runoff were closely related to soil temperature, and the effect of permafrost degradation on the carbon cycle requires further study. Finally, current challenges in simulation of permafrost change processes on the QTP were discussed, emphasizing that permafrost degradation under climate change is a slow and non‐linear process. This review will aid future studies examining the mechanism underlying the interaction between permafrost and climate change, and environmental protection in permafrost regions on the QTP.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140382203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal characteristics and variability in the thermal state of permafrost on the Qinghai–Tibet Plateau 青藏高原冻土热状态的时空特征和变异性
IF 5 3区 地球科学
Permafrost and Periglacial Processes Pub Date : 2024-02-28 DOI: 10.1002/ppp.2219
G. Hu, Zhao Lin, Sun Zhe, Zou Defu, Xiao Yao, Guang-yue Liu, Du Erji, Wang Chong, Yuanwei Wang, Xiaodong Wu, Lingxiao Wang, Yonghua Zhao
{"title":"Spatiotemporal characteristics and variability in the thermal state of permafrost on the Qinghai–Tibet Plateau","authors":"G. Hu, Zhao Lin, Sun Zhe, Zou Defu, Xiao Yao, Guang-yue Liu, Du Erji, Wang Chong, Yuanwei Wang, Xiaodong Wu, Lingxiao Wang, Yonghua Zhao","doi":"10.1002/ppp.2219","DOIUrl":"https://doi.org/10.1002/ppp.2219","url":null,"abstract":"Permafrost degradation on the Qinghai–Tibet Plateau (QTP) has significant impacts on climate, hydrology, and engineering and environmental systems. To understand the temporal and spatial characteristics of permafrost on the QTP, we quantified the variation in active layer thickness (ALT), permafrost thermal state, and future permafrost change under different scenarios using observational data, reanalysis data, and the numerical permafrost model. Generally, ALT ranged from 0.5 to 6.0 m with an average of 2.39 m, and mean annual ground temperature (at a depth of zero annual amplitude for ground temperature) mainly ranged between 0 and −3°C with an average of −0.85°C. The soil temperatures in different layers based on the ERA5‐Land data revealed even stronger increasing trends, for example, 0.245, 0.245, 0.244, and 0.238°C/decade at depths of 0–7, 7–28, 28–100, and 100–289 cm from 1980 to 2021, compared to those during the period from 1960 to 2021, which were 0.153, 0.156, 0.155, and 0.149°C/decade, respectively. The average warming trends in annual mean soil temperature were 0.153 and 0.243°C/decade from 1960 to 2021 and 1980 to 2021, respectively. The average rate of thickening of the ALT among the 10 active layer observation sites was 2.84 cm/year. There was a significant warming trend in ground temperature above ~15 m with warming of 0.063 to 0.120, 0.026 to 0.182, 0.101 to 0.314, and 0.189 to 0.303°C/decade at the QTB01, QTB06, QTB08, and XDTGT sites, respectively, and yearly minimum ground temperatures exhibited stronger warming trends than maximum ground temperatures. In addition, the simulation revealed significant increases in ground temperature at the Xidatan (XDT) and Tanggula (TGL) sites under both historical and future Representative Concentration Pathway (RCP) scenarios, but the increases in ground temperature were significantly greater at TGL than XDT. These findings provide important information for understanding the variability in permafrost degradation processes and improving simulations of permafrost change under climate change on the QTP.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140418633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信