Sizhong Yang, Xi Wen, Tonghua Wu, Xiaodong Wu, Xiaoming Wang, Xiaoying Jin, Xiaoying Li, Xue Yang, Ling Yang, Hongwei Wang
{"title":"Carbon‐cycling microorganisms in permafrost and their responses to a warming climate: A review","authors":"Sizhong Yang, Xi Wen, Tonghua Wu, Xiaodong Wu, Xiaoming Wang, Xiaoying Jin, Xiaoying Li, Xue Yang, Ling Yang, Hongwei Wang","doi":"10.1002/ppp.2206","DOIUrl":null,"url":null,"abstract":"Abstract Global climate warming is accelerating permafrost degradation. The large amounts of soil organic matter in permafrost‐affected soils are prone to increased microbial decomposition in a warming climate. Along with permafrost degradation, changes to the soil microbiome play a crucial role in enhancing our understanding and in predicting the feedback of permafrost carbon. In this article, we review the current state of knowledge of carbon‐cycling microbial ecology in permafrost regions. Microbiomes in degrading permafrost exhibit variations across spatial and temporal scales. Among the short‐term, rapid degradation scenarios, thermokarst lakes have distinct biogeochemical conditions promoting emission of greenhouse gases. Additionally, extreme climatic events can trigger drastic changes in microbial consortia and activity. Notably, environmental conditions appear to exert a dominant influence on microbial assembly in permafrost ecosystems. Furthermore, as the global climate is closely connected to various permafrost regions, it will be crucial to extend our understanding beyond local scales, for example by conducting comparative and integrative studies between Arctic permafrost and alpine permafrost on the Qinghai–Tibet Plateau at global and continental scales. These comparative studies will enhance our understanding of microbial functioning in degrading permafrost ecosystems and help inform effective strategies for managing and mitigating the impacts of climate change on permafrost regions.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"28 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ppp.2206","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Global climate warming is accelerating permafrost degradation. The large amounts of soil organic matter in permafrost‐affected soils are prone to increased microbial decomposition in a warming climate. Along with permafrost degradation, changes to the soil microbiome play a crucial role in enhancing our understanding and in predicting the feedback of permafrost carbon. In this article, we review the current state of knowledge of carbon‐cycling microbial ecology in permafrost regions. Microbiomes in degrading permafrost exhibit variations across spatial and temporal scales. Among the short‐term, rapid degradation scenarios, thermokarst lakes have distinct biogeochemical conditions promoting emission of greenhouse gases. Additionally, extreme climatic events can trigger drastic changes in microbial consortia and activity. Notably, environmental conditions appear to exert a dominant influence on microbial assembly in permafrost ecosystems. Furthermore, as the global climate is closely connected to various permafrost regions, it will be crucial to extend our understanding beyond local scales, for example by conducting comparative and integrative studies between Arctic permafrost and alpine permafrost on the Qinghai–Tibet Plateau at global and continental scales. These comparative studies will enhance our understanding of microbial functioning in degrading permafrost ecosystems and help inform effective strategies for managing and mitigating the impacts of climate change on permafrost regions.
期刊介绍:
Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.