Plant OmicsPub Date : 2019-09-20DOI: 10.21475/poj.12.02.19.p1896
G. Aljeddani
{"title":"Phytoremediation of some heavy metals using Prosopis juli flora and Conocarpus lancifolius– Soil analysis","authors":"G. Aljeddani","doi":"10.21475/poj.12.02.19.p1896","DOIUrl":"https://doi.org/10.21475/poj.12.02.19.p1896","url":null,"abstract":"Environmental pollution is causing damage to the flora and fauna, resulting in a number of negative impacts on the environment. The present study aims towards evaluation of soil heavy metals (chromium, lead, and nickel) from different locations of Jeddah using leaves of two plant species. Two naturally grown plant species, Prosopis juli flora and Conocarpus lancifolius were collected from four different sites. The soil samples were collected near the factories, main roads, and branch roads in Jeddah. The soil samples were dried and sieved through a 2mm plastic sieve to remove large gravel-sized materials. Soil texture, pH, and EC evaluation were conducted. The amount of Cr, Pb, and Ni was determined using Atomic Absorption Spectrophotometer Model Inductivity coupled plasma emission spectrometer ICP (PARKIN ELEMER). SPSS, ANOVA, and Post-Hoc Test were used to analyze the data. The results showed that the amount of heavy metal in the soil of Prosopis juli flora were between 0.74-54.0μg/g D.wt. for Cr, 0.31-4.64 μg/g D.wt. for Pb and 1.22-24.5 μg/g D.wt. for Ni. The range of Cr, Pb and Ni in the leaves were between 0.04-13.3.0μg/g D.wt. for Cr, 0.06-20.0 μg/g D.wt. for Pb and 0.16-9.0μg/g D.wt. for Ni. For the soil of Prosopis juli flora, the EC ranged between 0.27- 1.05 mS/cm; whereas, pH ranged from 7.29-7.55 and 78.5-96.5% for sand, 1.0-16.5% for silt, and 1.0-6.0 for clay. There was a significant correlation between the soil textures, clay, and silt at selected sites. Phytoremediation is an effective strategy to overcome the effects of heavy metals including Cr, Pb, and Ni that are being absorbed in plants.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44972018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2019-09-20DOI: 10.21475/poj.12.02.19.p1825
A. Mahato, Ajay Sharm, N. Singh
{"title":"Genome-wide characterization and expression patterns of chitinase genes in the pigeonpea (Cajanus cajan (L.) Millsp.) genome","authors":"A. Mahato, Ajay Sharm, N. Singh","doi":"10.21475/poj.12.02.19.p1825","DOIUrl":"https://doi.org/10.21475/poj.12.02.19.p1825","url":null,"abstract":"Plant chitinases are involved in defense as well as a wide range of physiological functions in plants, including germination, embryogenesis, flowering, and senescence. This study was conducted to identify and annotate the chitinase-related genes from the pigeonpea genome version 2.0, their chromosomal localization and phylogenetic relationship with chitinase genes from 13 different plant species. Here, we report the identification of 34 putative chitinase genes in the pigeonpea genome. These 34 genes encode proteins belonging to two functional domain families, and are subdivided into four classes matching four of the five chitinase classes in Arabidopsis. These chitinase genes are present in clusters on the chromosome. We investigated the expression patterns of these chitinases in 29 different tissues at five developmental stages. There was clear clustering of the chitinase genes into three groups based on their expression patterns in tissues. We identified two chitinase genes C_caj-24 and C_caj-25 that were highly expressed in all tissues as well as other chitinase genes with tissue-specific expression, which suggests that they play important roles in plant defense at specific developmental stages. This information on pigeonpea chitinases could be useful for the development of pigeonpea varieties that are resistant to insect pests and fungal diseases.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46673190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-11-20DOI: 10.21475/poj.11.03.18.p1442
Yi Wang, Yuming Yang, Juan Wang, Yuan Xiaolong
{"title":"Transcriptome analysis identified genes involved in anthocyanin biosynthesis in Rainbow bamboo (Indosasa hispida MeClure cv. ‘Rainbow’)","authors":"Yi Wang, Yuming Yang, Juan Wang, Yuan Xiaolong","doi":"10.21475/poj.11.03.18.p1442","DOIUrl":"https://doi.org/10.21475/poj.11.03.18.p1442","url":null,"abstract":"Rainbow bamboo (Indosasa hispida) is an ornamental plant, which contains unique red to purple anthocyanin in its culm. However, the biosynthesis and function of anthocyanin in bamboo remains unclear. In this study, RNA-seq was used to investigate the transcriptome of the species and compare the gene expression profiles of red and white culms. The expression levels of genes involved in the anthocyanin biosynthesis pathway were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In total, 5.92 billion reads were obtained from the culm of Rainbow bamboo, which were assembled into 60,716 unigenes. qRT-PCR showed that the expression levels of anthocyanin biosynthesis-related genes in the red and white culms were higher than that in green leaves and that their levels in the red culm without sheath were higher than that in the white culm with sheath. Transcriptome analysis and qRT-PCR showed that the differences in the expression of genes encoding chalcone isomerase (CHI), dihydroflavonol reductase (DFR), flavonoid 3'-hydroxylase (F3'H), and anthocyanidin 3-O-glycosyltransferase (A3GT) between the culm and leaf were significant. This implies that CHI, DFR, F3'H, and A3GT play important roles in anthocyanin synthesis and accumulation in the culm of Rainbow bamboo.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45952260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-11-20DOI: 10.21475/POJ.11.03.18.P1548
Farnaz Tahoori, A. Majd, T. Nejadsattari, H. Ofoghi, A. Iranbakhsh
{"title":"Effects of silver nitrate (AgNO3) on growth and anatomical structure of vegetative organs of liquorice (Glycyrrhiza glabra L.) under in vitro condition","authors":"Farnaz Tahoori, A. Majd, T. Nejadsattari, H. Ofoghi, A. Iranbakhsh","doi":"10.21475/POJ.11.03.18.P1548","DOIUrl":"https://doi.org/10.21475/POJ.11.03.18.P1548","url":null,"abstract":"Liquorice (Glycyrrhiza glabra L.) has been used worldwide as a medicine for a long time. In this research, the effect of silver nitrate (AgNO3) as a growth regulator and anti-ethylene in in vitro culture was investigated on growth and anatomical structure of vegetative organs (root, hypocotyl, shoot, leaf) as well as the number of stomata and trichomes in the leaves of liquorice under in vitro culture condition. The seeds were cultured in MS culture media containing different concentrations of AgNO3 (0, 2, 4, 8, and 10 mg L-1). Investigations on 20-day seedlings after three replications showed a significant increase in length and growth of roots, hypocotyls and shoots, and decreased number of stomata and trichomes in the samples treated with AgNO3 (P≤0.05). The effects of AgNO3 on anatomical structures of the organs included the increased cell division in root and shoot tips, reduced vascular tissues and sclerenchyma-fiber (with lignified cell walls), increased thickness of Casparian strip and cell walls of endodermis, reduced thickness of epidermis and increased intercellular spaces in mesophyll. The leaf area was measured in the 4-month plantlets, showing a significant increase in the samples treated with AgNO3. Furthermore, there was significant difference in increased leaf area applying 10 mg L-1 treatment and other concentrations as well as between the concentrations of 2 and 8 mg L-1. It seems that these results are due to the inhibitory effects of AgNO3 on the production and function of ethylene and the plant strategy to increase the tolerance against silver metal.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46514559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive analysis of the NAC gene family in Elaeis guineensis","authors":"Yong Xiao, Haikuo Fan, Jianwei Ma, Xintao Lei, Yong Wang, Hongxing Cao, Lixia Zhou, Yong Zhang, W. Xia","doi":"10.21475/POJ.11.03.18.P1037","DOIUrl":"https://doi.org/10.21475/POJ.11.03.18.P1037","url":null,"abstract":"The NAC gene family encode transcriptional regulator that contain a conserved NAM domain near the N-terminus and participate in the regulation of plant development and response to different abiotic stresses. In this study, 129 EgNAC genes were identified from the genome sequence of Elaeis guineensis and 97 EgNAC located on the chromsomes with an average of 4.56 EgNAC genes per chromosome. About 60% of EgNACs contained three exons and the gene sizes varied from 541 bp to 37,294 bp. Genomic duplication analysis showed that 10 EgNAC genes were involved in segmental duplication events and two genes were from tandem duplication. The gene expression profiles of EgNACs based on transcriptome database for different oil palm tissues showed that 30 EgNACs with low or no expression and 24 EgNACs were specifically expressed in one tissue. The trancriptome comparison between the control and cold stress samples demonstrated that thirty-seven EgNACs were down-regulated and 82 EgNACs were up-regulated under cold stress. Further RT-qPCR showed that the expression for 24 out of 32 validated EgNACs were induced under both cold, drought and salt stresses. Our comprehensive analysis of EgNAC genes has provided clues for candidate genes involved in abiotic stress tolerance.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49640795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-11-20DOI: 10.21475/POJ.11.03.18.P1186
R. Mostafa, H. Essawy
{"title":"Biosynthesis of novel phytochemicals in tobacco plant infected with tobacco mosaic tobamovirus (TMV)","authors":"R. Mostafa, H. Essawy","doi":"10.21475/POJ.11.03.18.P1186","DOIUrl":"https://doi.org/10.21475/POJ.11.03.18.P1186","url":null,"abstract":"The main purpose of this work was to study the effect of TMV infection on physiology of active gradient photochemicals and protein expression in infected tobacco plants. Impact of Tobacco mosaic tobamovirus (TMV) on active gradient photochemicals quantitative and qualitative was evaluated in Nicotiana tobaccum cv. white burly. First, the TMV samples were isolated from single local lesions of infected leaves of N. glutinosa. Then, the N. tobaccum cv. white burly plants were inoculated with TMV. The infected plants showed severe systemic mosaic symptoms and reduction of leave size. We used Datura metel as a diagnostic tool-plant (indicator) for mosaic virus because of its vast exhibitory ability to show the symptoms incited by viruses. It was confirmed that these symptoms were due to the effect of TMV virus, comparing with Datura plant (as control). Analysis of TMV infected leaves by GC-mass detected biosynthesis of novel photochemicals (2-cyclopenten-1-one, Furfural, Indene, Pyrrole, Benzonitrile, Guaiacol and Oxime, methoxy-phenyl) that could not be detected in healthy plants. Furthermore, a 56.17% decreased in nicotine content was observed in infected plants compared with healthy ones. Also, increase of soluble protein contents was observed in infected leaves in response to TMV infection, compared with healthy ones. Alterations in protein patterns were observed in N. tabaccum leaves in response to TMV infection using SDS PAGE. Several secondary bioactive compounds were also found to hold important functions in infected plants. For example, flavonoids could protect against free radicals generated during photosynthesis. Terpenoids may attract pollinators or seed dispersers, or inhibit competing plants. Alkaloids usually ward-off herbivore animals or insect attacks (phytoalexins).","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46103178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-11-01DOI: 10.21475/POJ.11.03.18.P1227
F. C. Ginibun, P. Arens, B. Vosman, S. Bhassu, N. Khalid, R. Y. Othman
{"title":"Genetic diversity of endangered terrestrial orchids Spathoglottis plicata in Peninsular Malaysia based on AFLP markers","authors":"F. C. Ginibun, P. Arens, B. Vosman, S. Bhassu, N. Khalid, R. Y. Othman","doi":"10.21475/POJ.11.03.18.P1227","DOIUrl":"https://doi.org/10.21475/POJ.11.03.18.P1227","url":null,"abstract":"Spathoglottis plicata is an endangered terrestrial orchid species that have experienced severe threats to its habitat as wild forest sites come under pressure from industrialisation and natural disasters. This orchid species chosen to evaluate their levels of genetic diversity and population genetic structure, which 25-30 accession collected in the different location with different geographical, altitude and habitat. Genomic DNA was extracted from six natural populations (n=172) in Peninsular Malaysia using eleven AFLP markers of EcoRI+3 bases/MseI+3 base primer combinations. Based on 279 polymorphic bands, a significant degree of genetic population differentiation was found, with a 78.5% variation within populations as measured by AMOVA, indicating a potential restricted gene flow. Two distinct clades generated from a UPGMA dendrogram were further investigated through a Bayesian analysis using STRUCTURE software, producing an estimated population structure at optimal value K=4. These results point to the presence of four genetic structures in the Spathoglottis plicata population. The Pahang and Terengganu population revealed a higher than average genetic variation (60.25%), indicating that there may be a robust structural division between the population samples and a possible hybridisation between the Northern (Kedah), Southern (Negeri Sembilan and Johor) and Central (Selangor) region populations. In sum, these results suggest that geographical distance is the primary factor contributing to differences among populations and the need for conservation measures to protect the Spathoglottis plicata species.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46264203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-05-20DOI: 10.21475/POJ.11.02.18.1295
A. Tahmasebi, A. Afsharifar, Ahmad Heydari, M. Mehrabadi
{"title":"Expression analysis of host defense responses against the 8K (KDa) cysteine-rich viral silencing suppressor protein in Nicotiana benthamiana","authors":"A. Tahmasebi, A. Afsharifar, Ahmad Heydari, M. Mehrabadi","doi":"10.21475/POJ.11.02.18.1295","DOIUrl":"https://doi.org/10.21475/POJ.11.02.18.1295","url":null,"abstract":"Potato mop-top virus (PMTV) encodes the 8K cysteine-rich viral suppressor of RNA silencing. To gain an insight into N. benthamiana defense mechanisms against 8K suppressor protein, we expressed two 8K suppressors from Peruvian isolates in Nicotiana benthamiana and assessed the expression of its defense genes involved in autophagy (ATG6, ATG2 and ATG7, AGO1), salicylic acid (SA) (ICS1, NPR1 and PR1) and jasmonic acid (JA) (OPR3, COI1 and PDF1.2) pathways. To do this, the 8K cDNAs of two Peruvian PMTV isolates were cloned in pGWB17 vector with a C-terminal myc tag and N-terminal 35S promoter using Gateway technology. Agrobacterium cultures harboring PMTV 8K were syringe infiltrated into the abaxial side of N. benthamiana leaves. The expression levels of defense genes were examined in N. benthamiana leaves infiltrated with P1 8K, P11 8K and the control constructs at 2 and 5 days post infiltration in response to PMTV 8Ks using q-PCR technique. Our results showed that the expression levels of ATG6, ATG2, ATG7, ICS1, OPR3, NPR1, PR1, COI1 and PDF1.2 were increased in response to both 8K suppressors. However, the transcript level of Argonaute1 (AGO1) was decreased in response to both 8K suppressors compared with the control. These results indicated that 8K suppressor proteins can alter the expression of autophagy, SA and JA signaling pathway genes in N. benthamiana. Taken together, it seems that despite the 8K role in virus pathogenicity, it can also induce host defense responses to modulate plant-virus interactions and fine-tune host-virus coexistence.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"11 1","pages":"113-119"},"PeriodicalIF":0.0,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45630172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-05-20DOI: 10.21475/POJ.11.02.18.PNE1144
W. Huanca-Mamani, M. Ortiz, S. Cárdenas-Ninasivincha, G. Acosta-García, E. Bastías, C. n
{"title":"Gene expression analysis in response to combined salt and boron (B) stresses in a tolerant maize landrace","authors":"W. Huanca-Mamani, M. Ortiz, S. Cárdenas-Ninasivincha, G. Acosta-García, E. Bastías, C. n","doi":"10.21475/POJ.11.02.18.PNE1144","DOIUrl":"https://doi.org/10.21475/POJ.11.02.18.PNE1144","url":null,"abstract":"To understand the molecular stress response in maize plants to high salt and boron (B) stress, we focused on the transcript accumulation of six stress-related genes in Lluteño maize, a sweet corn landrace from the Lluta valley (northern Chile). This landrace is tolerant to salt and B stress. A randomized complete block design with four replications was used. Seedlings of Lluteño maize and maize hybrid B73 were exposed to 150 mM NaCl and 20 ppm B in nutrient solution for 120 hrs, then root and leaf samples were collected and Na + and B content were determined. Transcript accumulation of three salt stress-related genes SOS1, NHX2 and HKT1 and three B stress-related genes BOR1, BOR2 and PIP1;2 were determined in roots and leaves of Lluteño maize using RT-PCR and real-time PCR at 3 and 96 h after treatment with 150 mM NaCl and/or 20 ppm B. The results indicated that combined salt and B stress caused changes in physiological parameters. The damage was more severe in B73 than in Lluteño maize, confirming that this landrace behaves as a plant tolerant to these stresses. Regulation of stress-related genes under combined stress was different under individual stresses. The ability of Lluteño maize to survive and thrive in soil with high salinity and B concentration is probably based on a decrease in membrane water permeability, preventing salt and B uptake from the roots through down-regulation of BOR1, BOR2 transporters and PIP1;2 aquaporin. The increased water transport is mediated by the upregulation of the PIP1;2 in leaves, allowing cellular water conservation, and the retrieval of Na + from xylem through up-regulation of HKT1;1 transporters in roots and leaves.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"11 1","pages":"80-88"},"PeriodicalIF":0.0,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47107503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant OmicsPub Date : 2018-05-20DOI: 10.21475/POJ.11.02.18.1238
Saril Mamgain, Shalini Dhiman, R. Pathak, M. Baunthiyal
{"title":"In silico identification of agriculturally important molecule(s) for defense induction against bacterial blight disease in Soybean (Glycine max)","authors":"Saril Mamgain, Shalini Dhiman, R. Pathak, M. Baunthiyal","doi":"10.21475/POJ.11.02.18.1238","DOIUrl":"https://doi.org/10.21475/POJ.11.02.18.1238","url":null,"abstract":"The productivity of Glycine max (Soybean), one of the economically important crops of India, is seriously affected by bacterial blight disease which is mainly caused by Psedomonas syringae. The disease results in significant yield losses in Soybean crops. Since no proven resistant source is available against bacterial blight, the only option remaining is to utilize biotechnological strategies which could lead to inhibition of pathogenic proteins of the Psedomonas syringae responsible for disease progression. Phytoalexins are well known to inhibit bacterial growth and trigger defense response against diseases in crop plants. The present study was conducted to identify the molecules which could inhibit the growth and development of bacteria. A few proteins were selected from literature analysis viz., Ornithine carbamoyl transferase 2, phaseolotoxin-insensitive, avirulence protein AvrRpt2, HarpinHrpZ, Sensor protein GacS, and Translation initiation factor IF-3 of Psedomonas syringae as possible molecular targets of phytoalexins. The molecular modeling of these proteins were done by using their amino acid sequence on Phyre2 and I-TASSER tool followed by model validation through energy minimization and Ramachandran plot analysis. Subsequently molecular docking was performed using some selected phytoalexins produced by members of Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae family with each modeled protein structure by AutoDock vina. Based on the molecular docking study, we identified efficient defense molecules, which can be used for the development of agrochemicals for protection of G. max against infection of Psedomonas syringae.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"11 1","pages":"98-105"},"PeriodicalIF":0.0,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45456293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}