W. Huanca-Mamani, M. Ortiz, S. Cárdenas-Ninasivincha, G. Acosta-García, E. Bastías, C. n
{"title":"Gene expression analysis in response to combined salt and boron (B) stresses in a tolerant maize landrace","authors":"W. Huanca-Mamani, M. Ortiz, S. Cárdenas-Ninasivincha, G. Acosta-García, E. Bastías, C. n","doi":"10.21475/POJ.11.02.18.PNE1144","DOIUrl":null,"url":null,"abstract":"To understand the molecular stress response in maize plants to high salt and boron (B) stress, we focused on the transcript accumulation of six stress-related genes in Lluteño maize, a sweet corn landrace from the Lluta valley (northern Chile). This landrace is tolerant to salt and B stress. A randomized complete block design with four replications was used. Seedlings of Lluteño maize and maize hybrid B73 were exposed to 150 mM NaCl and 20 ppm B in nutrient solution for 120 hrs, then root and leaf samples were collected and Na + and B content were determined. Transcript accumulation of three salt stress-related genes SOS1, NHX2 and HKT1 and three B stress-related genes BOR1, BOR2 and PIP1;2 were determined in roots and leaves of Lluteño maize using RT-PCR and real-time PCR at 3 and 96 h after treatment with 150 mM NaCl and/or 20 ppm B. The results indicated that combined salt and B stress caused changes in physiological parameters. The damage was more severe in B73 than in Lluteño maize, confirming that this landrace behaves as a plant tolerant to these stresses. Regulation of stress-related genes under combined stress was different under individual stresses. The ability of Lluteño maize to survive and thrive in soil with high salinity and B concentration is probably based on a decrease in membrane water permeability, preventing salt and B uptake from the roots through down-regulation of BOR1, BOR2 transporters and PIP1;2 aquaporin. The increased water transport is mediated by the upregulation of the PIP1;2 in leaves, allowing cellular water conservation, and the retrieval of Na + from xylem through up-regulation of HKT1;1 transporters in roots and leaves.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"11 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.11.02.18.PNE1144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 6
Abstract
To understand the molecular stress response in maize plants to high salt and boron (B) stress, we focused on the transcript accumulation of six stress-related genes in Lluteño maize, a sweet corn landrace from the Lluta valley (northern Chile). This landrace is tolerant to salt and B stress. A randomized complete block design with four replications was used. Seedlings of Lluteño maize and maize hybrid B73 were exposed to 150 mM NaCl and 20 ppm B in nutrient solution for 120 hrs, then root and leaf samples were collected and Na + and B content were determined. Transcript accumulation of three salt stress-related genes SOS1, NHX2 and HKT1 and three B stress-related genes BOR1, BOR2 and PIP1;2 were determined in roots and leaves of Lluteño maize using RT-PCR and real-time PCR at 3 and 96 h after treatment with 150 mM NaCl and/or 20 ppm B. The results indicated that combined salt and B stress caused changes in physiological parameters. The damage was more severe in B73 than in Lluteño maize, confirming that this landrace behaves as a plant tolerant to these stresses. Regulation of stress-related genes under combined stress was different under individual stresses. The ability of Lluteño maize to survive and thrive in soil with high salinity and B concentration is probably based on a decrease in membrane water permeability, preventing salt and B uptake from the roots through down-regulation of BOR1, BOR2 transporters and PIP1;2 aquaporin. The increased water transport is mediated by the upregulation of the PIP1;2 in leaves, allowing cellular water conservation, and the retrieval of Na + from xylem through up-regulation of HKT1;1 transporters in roots and leaves.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.