烟草花叶病毒(TMV)感染烟草植株中新型植物化学物质的生物合成

Q3 Agricultural and Biological Sciences
R. Mostafa, H. Essawy
{"title":"烟草花叶病毒(TMV)感染烟草植株中新型植物化学物质的生物合成","authors":"R. Mostafa, H. Essawy","doi":"10.21475/POJ.11.03.18.P1186","DOIUrl":null,"url":null,"abstract":"The main purpose of this work was to study the effect of TMV infection on physiology of active gradient photochemicals and protein expression in infected tobacco plants. Impact of Tobacco mosaic tobamovirus (TMV) on active gradient photochemicals quantitative and qualitative was evaluated in Nicotiana tobaccum cv. white burly. First, the TMV samples were isolated from single local lesions of infected leaves of N. glutinosa. Then, the N. tobaccum cv. white burly plants were inoculated with TMV. The infected plants showed severe systemic mosaic symptoms and reduction of leave size. We used Datura metel as a diagnostic tool-plant (indicator) for mosaic virus because of its vast exhibitory ability to show the symptoms incited by viruses. It was confirmed that these symptoms were due to the effect of TMV virus, comparing with Datura plant (as control). Analysis of TMV infected leaves by GC-mass detected biosynthesis of novel photochemicals (2-cyclopenten-1-one, Furfural, Indene, Pyrrole, Benzonitrile, Guaiacol and Oxime, methoxy-phenyl) that could not be detected in healthy plants. Furthermore, a 56.17% decreased in nicotine content was observed in infected plants compared with healthy ones. Also, increase of soluble protein contents was observed in infected leaves in response to TMV infection, compared with healthy ones. Alterations in protein patterns were observed in N. tabaccum leaves in response to TMV infection using SDS PAGE. Several secondary bioactive compounds were also found to hold important functions in infected plants. For example, flavonoids could protect against free radicals generated during photosynthesis. Terpenoids may attract pollinators or seed dispersers, or inhibit competing plants. Alkaloids usually ward-off herbivore animals or insect attacks (phytoalexins).","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of novel phytochemicals in tobacco plant infected with tobacco mosaic tobamovirus (TMV)\",\"authors\":\"R. Mostafa, H. Essawy\",\"doi\":\"10.21475/POJ.11.03.18.P1186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this work was to study the effect of TMV infection on physiology of active gradient photochemicals and protein expression in infected tobacco plants. Impact of Tobacco mosaic tobamovirus (TMV) on active gradient photochemicals quantitative and qualitative was evaluated in Nicotiana tobaccum cv. white burly. First, the TMV samples were isolated from single local lesions of infected leaves of N. glutinosa. Then, the N. tobaccum cv. white burly plants were inoculated with TMV. The infected plants showed severe systemic mosaic symptoms and reduction of leave size. We used Datura metel as a diagnostic tool-plant (indicator) for mosaic virus because of its vast exhibitory ability to show the symptoms incited by viruses. It was confirmed that these symptoms were due to the effect of TMV virus, comparing with Datura plant (as control). Analysis of TMV infected leaves by GC-mass detected biosynthesis of novel photochemicals (2-cyclopenten-1-one, Furfural, Indene, Pyrrole, Benzonitrile, Guaiacol and Oxime, methoxy-phenyl) that could not be detected in healthy plants. Furthermore, a 56.17% decreased in nicotine content was observed in infected plants compared with healthy ones. Also, increase of soluble protein contents was observed in infected leaves in response to TMV infection, compared with healthy ones. Alterations in protein patterns were observed in N. tabaccum leaves in response to TMV infection using SDS PAGE. Several secondary bioactive compounds were also found to hold important functions in infected plants. For example, flavonoids could protect against free radicals generated during photosynthesis. Terpenoids may attract pollinators or seed dispersers, or inhibit competing plants. Alkaloids usually ward-off herbivore animals or insect attacks (phytoalexins).\",\"PeriodicalId\":54602,\"journal\":{\"name\":\"Plant Omics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Omics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/POJ.11.03.18.P1186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.11.03.18.P1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是研究TMV感染对烟草植株活性梯度光化学生理和蛋白质表达的影响。以白肋烟为材料,对烟草花叶病毒(TMV)对活性梯度光化学的影响进行了定量和定性评价。首先,TMV样品是从粘性猪笼草感染叶片的单个局部病变中分离出来的。然后,用TMV对烟草白瘤植株进行接种。受感染的植物表现出严重的系统性马赛克症状和叶片大小的减少。我们使用曼陀罗作为马赛克病毒的诊断工具植物(指标),因为它具有显示病毒引发症状的巨大能力。与曼陀罗植物(作为对照)相比,证实这些症状是由于TMV病毒的影响。通过GC质谱分析TMV感染的叶片,检测到健康植物中无法检测到的新型光化学物质(2-环戊烯-1-酮、糠醛、茚、吡咯、苄腈、愈创木酚和肟、甲氧基苯基)的生物合成。此外,与健康植物相比,受感染植物的尼古丁含量下降了56.17%。此外,与健康叶片相比,受TMV感染的叶片可溶性蛋白含量增加。利用SDS PAGE观察了烟草球菌叶片对TMV感染的蛋白质模式变化。一些次生生物活性化合物也被发现在受感染的植物中具有重要功能。例如,类黄酮可以保护光合作用过程中产生的自由基。萜类化合物可能会吸引传粉昆虫或种子传播者,或抑制竞争植物。生物碱通常能抵御草食性动物或昆虫的攻击(植物抗毒素)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biosynthesis of novel phytochemicals in tobacco plant infected with tobacco mosaic tobamovirus (TMV)
The main purpose of this work was to study the effect of TMV infection on physiology of active gradient photochemicals and protein expression in infected tobacco plants. Impact of Tobacco mosaic tobamovirus (TMV) on active gradient photochemicals quantitative and qualitative was evaluated in Nicotiana tobaccum cv. white burly. First, the TMV samples were isolated from single local lesions of infected leaves of N. glutinosa. Then, the N. tobaccum cv. white burly plants were inoculated with TMV. The infected plants showed severe systemic mosaic symptoms and reduction of leave size. We used Datura metel as a diagnostic tool-plant (indicator) for mosaic virus because of its vast exhibitory ability to show the symptoms incited by viruses. It was confirmed that these symptoms were due to the effect of TMV virus, comparing with Datura plant (as control). Analysis of TMV infected leaves by GC-mass detected biosynthesis of novel photochemicals (2-cyclopenten-1-one, Furfural, Indene, Pyrrole, Benzonitrile, Guaiacol and Oxime, methoxy-phenyl) that could not be detected in healthy plants. Furthermore, a 56.17% decreased in nicotine content was observed in infected plants compared with healthy ones. Also, increase of soluble protein contents was observed in infected leaves in response to TMV infection, compared with healthy ones. Alterations in protein patterns were observed in N. tabaccum leaves in response to TMV infection using SDS PAGE. Several secondary bioactive compounds were also found to hold important functions in infected plants. For example, flavonoids could protect against free radicals generated during photosynthesis. Terpenoids may attract pollinators or seed dispersers, or inhibit competing plants. Alkaloids usually ward-off herbivore animals or insect attacks (phytoalexins).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Omics
Plant Omics 生物-植物科学
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including: Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信