Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering最新文献

筛选
英文 中文
Yaw stability control of tractor vehicle based on nonsingular fast terminal sliding mode 基于非奇异快速终端滑动模式的牵引车偏航稳定性控制
IF 1.7 4区 工程技术
Hongbo Wang, Siyi Zheng, Shihan Xu
{"title":"Yaw stability control of tractor vehicle based on nonsingular fast terminal sliding mode","authors":"Hongbo Wang, Siyi Zheng, Shihan Xu","doi":"10.1177/09544070241272772","DOIUrl":"https://doi.org/10.1177/09544070241272772","url":null,"abstract":"Yaw stability is very important for commercial traction vehicles, the yaw stability control of traction vehicle based on nonsingular fast terminal sliding mode is studied in this paper. Firstly, the sliding mode control with high robustness is selected for the yaw moment controller, and the traditional sliding mode, fast terminal sliding mode, and nonsingular fast terminal sliding mode (NFTSM) are derived. The rear axle side deflection angle is monitored, and the traditional yaw stability control strategy is improved. When computing actuator response value, the calculation of the target slip rate and the target engine torque are added on the basis of the traditional calculation of the target braking pressure, and the variable parameter PID method is introduced in the torque calculation part to improve the effect of torque control. A simulation and a real vehicle test are carried out, and the results show that the effect of the developed nonsingular fast terminal sliding mode controller is significantly better than the fast terminal sliding mode method and has strong vehicle directional stability.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal control strategy for vehicle starting coordination based on driver intention recognition 基于驾驶员意图识别的车辆启动协调优化控制策略
IF 1.7 4区 工程技术
Xianhe Shang, Fujun Zhang, Zhenyu Zhang, Tao Cui
{"title":"Optimal control strategy for vehicle starting coordination based on driver intention recognition","authors":"Xianhe Shang, Fujun Zhang, Zhenyu Zhang, Tao Cui","doi":"10.1177/09544070241272803","DOIUrl":"https://doi.org/10.1177/09544070241272803","url":null,"abstract":"To enhance the starting performance of heavy-duty vehicles under different starting conditions, a vehicle starting coordinated optimal control method based on driver intention recognition is proposed. This method uses the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) for starting intention recognition, dividing the starting intentions into three categories: gentle start, normal start, and emergency start. The GMM-HMM starting intention recognition model is validated using real vehicle data. Based on the recognition results of driver intentions, a performance index function is defined as a weighted sum of smoke limit restriction time, 0–20 km/h acceleration time, and starting jerk. By assigning different weight coefficients, the allocation of requirements for starting power and comfort is achieved. Based on the principle of minimizing values, the coordinated control parameters (upshift speed and starting fuel quantity) are optimized, resulting in the optimal combination of coordinated control parameters under different starting intentions. This enables the optimal control of vehicle starting coordination based on the driver’s different starting intentions.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating vehicle sideslip angle through kinematic and dynamic contributions: Theory and experimental results 通过运动学和动力学贡献估算车辆侧滑角:理论和实验结果
IF 1.7 4区 工程技术
Mariagrazia Tristano, Basilio Lenzo
{"title":"Estimating vehicle sideslip angle through kinematic and dynamic contributions: Theory and experimental results","authors":"Mariagrazia Tristano, Basilio Lenzo","doi":"10.1177/09544070241274534","DOIUrl":"https://doi.org/10.1177/09544070241274534","url":null,"abstract":"Vehicle lateral stability plays an important role within vehicle passenger safety. The study of lateral stability is typically related to investigating the dynamics of relevant vehicle states: among these, the vehicle sideslip angle ([Formula: see text]) emerges as a prominent candidate. Sideslip angle measurement is expensive and impractical, hence estimation techniques are often used, typically based on Kalman filters or neural networks, both with their issues. This work presents an alternative estimation method based on the idea of splitting sideslip angle into kinematic and dynamic contributions, and by observing that the kinematic contribution is straightforward to estimate. Therefore, efforts are devoted into estimating dynamic sideslip angle, which is herein obtained through a parametric interpolation harnessing lateral acceleration. Only data available from traditional vehicle onboard sensors are used in the process. Experimental results are presented along several manoeuvres on a full-scale vehicle, with the estimator running online within a dSPACE unit, ultimately supporting the efficacy and real-time feasibility of the proposed approach.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of embedded EGR pipe in diesel engine intake port on in-cylinder intake stratification 柴油发动机进气口嵌入式 EGR 管对缸内进气分层的影响
IF 1.7 4区 工程技术
Guangyuan Bao, Chao He, Libing Xie, Yingxue Xiao, Jiaqiang Li
{"title":"The effect of embedded EGR pipe in diesel engine intake port on in-cylinder intake stratification","authors":"Guangyuan Bao, Chao He, Libing Xie, Yingxue Xiao, Jiaqiang Li","doi":"10.1177/09544070241272784","DOIUrl":"https://doi.org/10.1177/09544070241272784","url":null,"abstract":"This study focuses on the design of an embedded Exhaust gas recirculation (EGR) pipe within the helical intake port of a diesel engine, adjusting the in-cylinder EGR stratification by changing the structural parameters of the EGR pipe, and examining its impact on engine combustion and emissions. The main focus is on the effect of EGR pipe angle B on in-cylinder EGR stratification. The degree of in-cylinder EGR gas stratification is used to evaluate the EGR stratification gradient and analyze the effects of different swirl ratios and EGR stratification on combustion. The study shows that introducing CO<jats:sub>2</jats:sub> through the EGR pipe can form an ideal radial stratification of rich outer and lean inner layers in the combustion chamber, with a maximum stratification degree of up to 13.2%. Comparative analysis of different swirl ratios and EGR gas introduction reveals that increasing the swirl ratio can significantly reduce soot emissions. Additionally, introducing 10% CO<jats:sub>2</jats:sub> through the embedded EGR pipe can significantly reduce NO x emissions.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of energy management strategy based on deep reinforcement learning algorithm for multi-speed pure electric vehicles 基于深度强化学习算法的多速纯电动汽车能量管理策略研究
IF 1.7 4区 工程技术
Weiwei Yang, Denghao Luo, Wenming Zhang, Nong Zhang
{"title":"Investigation of energy management strategy based on deep reinforcement learning algorithm for multi-speed pure electric vehicles","authors":"Weiwei Yang, Denghao Luo, Wenming Zhang, Nong Zhang","doi":"10.1177/09544070241275427","DOIUrl":"https://doi.org/10.1177/09544070241275427","url":null,"abstract":"With increasingly prominent problems such as environmental pollution and the energy crisis, the development of pure electric vehicles has attracted more and more attention. However, the short range is still one of the main reasons affecting consumer purchases. Therefore, an optimized energy management strategy (EMS) based on the Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithm is proposed to minimize the energy loss for multi-speed pure electric vehicles, respectively, in this paper. Vehicle speed, acceleration, and battery SOC are selected as state variables, and the action space is set to the transmission gear. The reward function takes into account energy consumption and battery life. Simulation results reveal that the proposed EMS-based SAC has a better performance compared to DDPG in the NEDC cycle, manifested explicitly in the following three aspects: (1) the battery SOC decreases from 0.8 to 0.7339 and 0.73385, and the energy consumption consumes 5264.8 and 5296.6 kJ, respectively; (2) The maximumC-rate is 1.565 and 1.566, respectively; (3) the training efficiency of SAC is higher. Therefore, the SAC-based energy management strategy proposed in this paper has a faster convergence speed and gradually approaches the optimal energy-saving effect with a smaller gap. In the WLTC condition, the SAC algorithm reduces 24.1 kJ of energy compared with DDPG, and the C-rate of SAC is below 1. The maximum value is 1.565, which aligns with the reasonable operating range of vehicle batteries. The results show that the SAC algorithm is adaptable under different working conditions.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regenerative braking fault compensation control of distributed electric vehicle considering random wheel fault degree 考虑随机车轮故障程度的分布式电动汽车再生制动故障补偿控制
IF 1.7 4区 工程技术
Ting Fang, Qidong Wang, Linfeng Zhao, Wuwei Chen, Bixin Cai, Huiran Wang
{"title":"Regenerative braking fault compensation control of distributed electric vehicle considering random wheel fault degree","authors":"Ting Fang, Qidong Wang, Linfeng Zhao, Wuwei Chen, Bixin Cai, Huiran Wang","doi":"10.1177/09544070241271761","DOIUrl":"https://doi.org/10.1177/09544070241271761","url":null,"abstract":"Distributed drive electric vehicles can reduce range anxiety through regenerative braking. However, if the wheel motor torque output fails, it will form an additional yaw moment to the vehicle, causing instability, or deviation and threatening its safety. To solve this problem, the research object is an electric vehicle driven by a four-wheel hub motor. A braking force compensation distribution strategy for front and rear axles is proposed, which combines electronic hydraulic braking (EHB) system compensation control and deviation auxiliary control. Firstly, a fault detection module is established, and the motor’s output torque is estimated by designing a torque observer to obtain the fault degree information of the motor. Secondly, to fully use the motor’s regenerative braking force, the fault-free and faulty electro-hydraulic braking force distribution strategies are designed in the coordinated distribution layer of the electro-hydraulic braking system. The corresponding electro-hydraulic braking force compensation method is selected according to the fault degree of the regenerative braking function, the position of the faulty wheel, and the braking strength. Then, a deviation auxiliary controller is designed based on the model predictive control, and the intervention time of the auxiliary controller is determined according to the vehicle’s state. Finally, the control method is verified based on CarSim/Simulink co-simulation and hardware-in-the-loop (HIL) platform. The test results show that the designed control method can effectively compensate for the regenerative braking failure of random wheel and ensure the braking safety of the vehicle.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of different spacing policies for longitudinal control in vehicle platooning 排车纵向控制中不同间距策略的比较分析
IF 1.7 4区 工程技术
Nguyen Viet Hung, Duc Lich Luu, Quoc Thai Pham, Ciprian Lupu
{"title":"Comparative analysis of different spacing policies for longitudinal control in vehicle platooning","authors":"Nguyen Viet Hung, Duc Lich Luu, Quoc Thai Pham, Ciprian Lupu","doi":"10.1177/09544070241273985","DOIUrl":"https://doi.org/10.1177/09544070241273985","url":null,"abstract":"Most existing automated driving vehicles in the platoon equipped with an Adaptive Cruise Control (ACC) systems and a Cooperative Adaptive Cruise Control (CACC) systems have mainly focused on enhancing safety, improving traffic efficiency problems, and reducing workload. The spacing strategy is the core of all platoon designs, and the performance of an ACC/CACC systems hinges on the select of the spacing strategy. Although, in the literature, there are many papers dealing with platoon control, detailed explanations of the operating mechanisms of two types of spacing policies including the Headway Spacing Strategy (CTHS), and Constant Spacing Strategy (CSS), and comparative studies on them are still lacking. This work presents the studies of the longitudinal control strategy of a platoon of vehicles equipped with the existing ACC systems and CACC systems under two different spacing policies to evaluate the performances. The contributions in this work are carefully reviewed and the operating mechanisms and characteristics of two different spacing policies: the CTHS and CSS, the general evaluation criteria for spacing strategies are provided and their advantages and disadvantages are based on the numerical results. Both numerical simulations and experiments with a platoon of smart cars in real-time have demonstrated the effectiveness and practicability of the presented methodology.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of carsickness mitigation: Navigating challenges and exploiting opportunities in the era of intelligent vehicles 晕车缓解回顾:驾驭智能汽车时代的挑战和机遇
IF 1.7 4区 工程技术
Daofei Li, Tingzhe Yu, Binbin Tang
{"title":"A review of carsickness mitigation: Navigating challenges and exploiting opportunities in the era of intelligent vehicles","authors":"Daofei Li, Tingzhe Yu, Binbin Tang","doi":"10.1177/09544070241269607","DOIUrl":"https://doi.org/10.1177/09544070241269607","url":null,"abstract":"Motion sickness (MS) has long been a common complaint in road transportation. However, in the era of driving automation, MS has become an increasingly significant issue. The future intelligent vehicle is envisioned as a mobile space for work or entertainment, but unfortunately passengers’ engagement in non-driving tasks may exacerbate MS. Finding effective MS countermeasures is crucial to ensure a pleasant passenger experience. Nevertheless, due to the complex mechanism of MS, there are numerous challenges in mitigating it, hindering the development of practical countermeasures. To address this, we first review two prevalent theories explaining the mechanism of MS. Subsequently, this paper provides a summary of current subjective and objective approaches for quantifying motion sickness levels. Then, it surveys existing methods for alleviating MS, including passenger adjustment, intelligent vehicle solutions, and motion cues of various modalities. Furthermore, we outline the limitations and remaining challenges of current research and highlight novel opportunities in the context of intelligent vehicles. Finally, we propose an integrated framework for alleviating MS. The findings of this review will enhance our understanding of carsickness and offer valuable insights for future research and practice in MS mitigation within modern vehicles.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing perception of vehicle motion by objective positioning of the longitudinal axis of rotation in driving simulators 通过客观定位驾驶模拟器的纵向旋转轴来增强对车辆运动的感知
IF 1.7 4区 工程技术
Henrik Hvitfeldt, Lars Drugge, Jenny Jerrelind
{"title":"Enhancing perception of vehicle motion by objective positioning of the longitudinal axis of rotation in driving simulators","authors":"Henrik Hvitfeldt, Lars Drugge, Jenny Jerrelind","doi":"10.1177/09544070241266444","DOIUrl":"https://doi.org/10.1177/09544070241266444","url":null,"abstract":"The automotive industry is heading towards a more objective approach to vehicle testing, but subjective evaluation is still an important part of the development process. Subjective evaluation in physical testing has environmental implications and is dependent on ambient conditions. A more repeatable, faster, safer and more cost-effective tool for subjective evaluation is to use moving base driving simulators. The motion cueing algorithms (MCA) maps the movement of the vehicle into the limited space of the simulator. The choice of reference point, that is, where on the vehicle to sample the motion to feed to the MCA and the alignment of the axis of rotation of the simulator cabin is still an open topic. This paper investigates the choice of reference point and corresponding simulator longitudinal axis of rotation in roll using two methods. The first method uses a linearised model of the combined system of vehicle, simulator and vestibular models. The second method, to position the cabin longitudinal axis of rotation, is based on offline optimisation. The linear model can capture important characteristics of the specific forces and rotations that are fed to the driver through the motion cueing algorithms and offers a method to objectively analyse and potentially tune the motion cueing. The analysis is further complemented with a subjective evaluation of corresponding settings. The results from the linear model, the offline optimisation and the subjective evaluation shows that a reference point at the driver’s head has a clear advantage over the full frequency range compared to a reference point in the chassis roll axis and that the positioning of the cabin longitudinal axis of rotation has a significant effect on the perceived vehicle characteristics.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative adaptive cruise control system with improved variable spacing strategy 采用改进型可变间距策略的协同自适应巡航控制系统
IF 1.7 4区 工程技术
Chunguo Zhou, Zhicheng Zeng, Jin Mao, Tengfei Zheng, Chao Liu
{"title":"Cooperative adaptive cruise control system with improved variable spacing strategy","authors":"Chunguo Zhou, Zhicheng Zeng, Jin Mao, Tengfei Zheng, Chao Liu","doi":"10.1177/09544070241271830","DOIUrl":"https://doi.org/10.1177/09544070241271830","url":null,"abstract":"To further improve the safety, tracking, comfort, fuel economy, and platoon fluctuation of the cooperative adaptive cruise control (CACC) system, and alleviate traffic congestion, an improved model predictive control (MPC) algorithm considering multi-objective optimization is designed. An error compensation prediction constant time headway spacing strategy considering relative velocity, relative acceleration, and preceding vehicle distance error is proposed. The spacing strategy is introduced into the prediction model of MPC to optimize the prediction accuracy, improve the response-ability of the rear vehicle to the change of the lead state, and better coordinate the conflicting multiple objectives. The asymptotic stability of the CACC system under the improved MPC algorithm is proved by the Lyapunov stability theory, and the evaluation index is established to quantify the comprehensive performance of the CACC system. The numerical simulation is carried out under rapid acceleration and deceleration conditions, and the results show that the improved model predictive control algorithm can improve the safety, tracking, comfort, fuel economy, and road capacity of the CACC system. To simulate real traffic scenarios, co-simulation is carried out under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) condition, which further verifies the rationality and effectiveness of the algorithm.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信