Guangyuan Bao, Chao He, Libing Xie, Yingxue Xiao, Jiaqiang Li
{"title":"柴油发动机进气口嵌入式 EGR 管对缸内进气分层的影响","authors":"Guangyuan Bao, Chao He, Libing Xie, Yingxue Xiao, Jiaqiang Li","doi":"10.1177/09544070241272784","DOIUrl":null,"url":null,"abstract":"This study focuses on the design of an embedded Exhaust gas recirculation (EGR) pipe within the helical intake port of a diesel engine, adjusting the in-cylinder EGR stratification by changing the structural parameters of the EGR pipe, and examining its impact on engine combustion and emissions. The main focus is on the effect of EGR pipe angle B on in-cylinder EGR stratification. The degree of in-cylinder EGR gas stratification is used to evaluate the EGR stratification gradient and analyze the effects of different swirl ratios and EGR stratification on combustion. The study shows that introducing CO<jats:sub>2</jats:sub> through the EGR pipe can form an ideal radial stratification of rich outer and lean inner layers in the combustion chamber, with a maximum stratification degree of up to 13.2%. Comparative analysis of different swirl ratios and EGR gas introduction reveals that increasing the swirl ratio can significantly reduce soot emissions. Additionally, introducing 10% CO<jats:sub>2</jats:sub> through the embedded EGR pipe can significantly reduce NO x emissions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of embedded EGR pipe in diesel engine intake port on in-cylinder intake stratification\",\"authors\":\"Guangyuan Bao, Chao He, Libing Xie, Yingxue Xiao, Jiaqiang Li\",\"doi\":\"10.1177/09544070241272784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the design of an embedded Exhaust gas recirculation (EGR) pipe within the helical intake port of a diesel engine, adjusting the in-cylinder EGR stratification by changing the structural parameters of the EGR pipe, and examining its impact on engine combustion and emissions. The main focus is on the effect of EGR pipe angle B on in-cylinder EGR stratification. The degree of in-cylinder EGR gas stratification is used to evaluate the EGR stratification gradient and analyze the effects of different swirl ratios and EGR stratification on combustion. The study shows that introducing CO<jats:sub>2</jats:sub> through the EGR pipe can form an ideal radial stratification of rich outer and lean inner layers in the combustion chamber, with a maximum stratification degree of up to 13.2%. Comparative analysis of different swirl ratios and EGR gas introduction reveals that increasing the swirl ratio can significantly reduce soot emissions. Additionally, introducing 10% CO<jats:sub>2</jats:sub> through the embedded EGR pipe can significantly reduce NO x emissions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241272784\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241272784","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of embedded EGR pipe in diesel engine intake port on in-cylinder intake stratification
This study focuses on the design of an embedded Exhaust gas recirculation (EGR) pipe within the helical intake port of a diesel engine, adjusting the in-cylinder EGR stratification by changing the structural parameters of the EGR pipe, and examining its impact on engine combustion and emissions. The main focus is on the effect of EGR pipe angle B on in-cylinder EGR stratification. The degree of in-cylinder EGR gas stratification is used to evaluate the EGR stratification gradient and analyze the effects of different swirl ratios and EGR stratification on combustion. The study shows that introducing CO2 through the EGR pipe can form an ideal radial stratification of rich outer and lean inner layers in the combustion chamber, with a maximum stratification degree of up to 13.2%. Comparative analysis of different swirl ratios and EGR gas introduction reveals that increasing the swirl ratio can significantly reduce soot emissions. Additionally, introducing 10% CO2 through the embedded EGR pipe can significantly reduce NO x emissions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.