Cooperative adaptive cruise control system with improved variable spacing strategy

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunguo Zhou, Zhicheng Zeng, Jin Mao, Tengfei Zheng, Chao Liu
{"title":"Cooperative adaptive cruise control system with improved variable spacing strategy","authors":"Chunguo Zhou, Zhicheng Zeng, Jin Mao, Tengfei Zheng, Chao Liu","doi":"10.1177/09544070241271830","DOIUrl":null,"url":null,"abstract":"To further improve the safety, tracking, comfort, fuel economy, and platoon fluctuation of the cooperative adaptive cruise control (CACC) system, and alleviate traffic congestion, an improved model predictive control (MPC) algorithm considering multi-objective optimization is designed. An error compensation prediction constant time headway spacing strategy considering relative velocity, relative acceleration, and preceding vehicle distance error is proposed. The spacing strategy is introduced into the prediction model of MPC to optimize the prediction accuracy, improve the response-ability of the rear vehicle to the change of the lead state, and better coordinate the conflicting multiple objectives. The asymptotic stability of the CACC system under the improved MPC algorithm is proved by the Lyapunov stability theory, and the evaluation index is established to quantify the comprehensive performance of the CACC system. The numerical simulation is carried out under rapid acceleration and deceleration conditions, and the results show that the improved model predictive control algorithm can improve the safety, tracking, comfort, fuel economy, and road capacity of the CACC system. To simulate real traffic scenarios, co-simulation is carried out under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) condition, which further verifies the rationality and effectiveness of the algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241271830","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To further improve the safety, tracking, comfort, fuel economy, and platoon fluctuation of the cooperative adaptive cruise control (CACC) system, and alleviate traffic congestion, an improved model predictive control (MPC) algorithm considering multi-objective optimization is designed. An error compensation prediction constant time headway spacing strategy considering relative velocity, relative acceleration, and preceding vehicle distance error is proposed. The spacing strategy is introduced into the prediction model of MPC to optimize the prediction accuracy, improve the response-ability of the rear vehicle to the change of the lead state, and better coordinate the conflicting multiple objectives. The asymptotic stability of the CACC system under the improved MPC algorithm is proved by the Lyapunov stability theory, and the evaluation index is established to quantify the comprehensive performance of the CACC system. The numerical simulation is carried out under rapid acceleration and deceleration conditions, and the results show that the improved model predictive control algorithm can improve the safety, tracking, comfort, fuel economy, and road capacity of the CACC system. To simulate real traffic scenarios, co-simulation is carried out under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) condition, which further verifies the rationality and effectiveness of the algorithm.
采用改进型可变间距策略的协同自适应巡航控制系统
为进一步提高协同自适应巡航控制系统(CACC)的安全性、跟踪性、舒适性、燃油经济性和排量波动性,缓解交通拥堵,设计了一种考虑多目标优化的改进型模型预测控制(MPC)算法。提出了一种考虑相对速度、相对加速度和前车距离误差的误差补偿预测恒定时间车头间距策略。该间隔策略被引入 MPC 预测模型,以优化预测精度,提高后车对前车状态变化的响应能力,并更好地协调相互冲突的多目标。利用李雅普诺夫稳定性理论证明了改进 MPC 算法下 CACC 系统的渐近稳定性,并建立了评价指标来量化 CACC 系统的综合性能。在急加速和急减速条件下进行了数值仿真,结果表明改进的模型预测控制算法可以提高 CACC 系统的安全性、跟踪性、舒适性、燃油经济性和道路通行能力。为模拟真实交通场景,在全球统一轻型车辆测试循环(WLTC)条件下进行了协同仿真,进一步验证了算法的合理性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信