Estimating vehicle sideslip angle through kinematic and dynamic contributions: Theory and experimental results

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mariagrazia Tristano, Basilio Lenzo
{"title":"Estimating vehicle sideslip angle through kinematic and dynamic contributions: Theory and experimental results","authors":"Mariagrazia Tristano, Basilio Lenzo","doi":"10.1177/09544070241274534","DOIUrl":null,"url":null,"abstract":"Vehicle lateral stability plays an important role within vehicle passenger safety. The study of lateral stability is typically related to investigating the dynamics of relevant vehicle states: among these, the vehicle sideslip angle ([Formula: see text]) emerges as a prominent candidate. Sideslip angle measurement is expensive and impractical, hence estimation techniques are often used, typically based on Kalman filters or neural networks, both with their issues. This work presents an alternative estimation method based on the idea of splitting sideslip angle into kinematic and dynamic contributions, and by observing that the kinematic contribution is straightforward to estimate. Therefore, efforts are devoted into estimating dynamic sideslip angle, which is herein obtained through a parametric interpolation harnessing lateral acceleration. Only data available from traditional vehicle onboard sensors are used in the process. Experimental results are presented along several manoeuvres on a full-scale vehicle, with the estimator running online within a dSPACE unit, ultimately supporting the efficacy and real-time feasibility of the proposed approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241274534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle lateral stability plays an important role within vehicle passenger safety. The study of lateral stability is typically related to investigating the dynamics of relevant vehicle states: among these, the vehicle sideslip angle ([Formula: see text]) emerges as a prominent candidate. Sideslip angle measurement is expensive and impractical, hence estimation techniques are often used, typically based on Kalman filters or neural networks, both with their issues. This work presents an alternative estimation method based on the idea of splitting sideslip angle into kinematic and dynamic contributions, and by observing that the kinematic contribution is straightforward to estimate. Therefore, efforts are devoted into estimating dynamic sideslip angle, which is herein obtained through a parametric interpolation harnessing lateral acceleration. Only data available from traditional vehicle onboard sensors are used in the process. Experimental results are presented along several manoeuvres on a full-scale vehicle, with the estimator running online within a dSPACE unit, ultimately supporting the efficacy and real-time feasibility of the proposed approach.
通过运动学和动力学贡献估算车辆侧滑角:理论和实验结果
车辆横向稳定性在车辆乘客安全方面发挥着重要作用。横向稳定性研究通常与调查相关车辆状态的动态有关:其中,车辆侧滑角([公式:见正文])是一个重要的候选参数。侧滑角的测量既昂贵又不实用,因此通常采用基于卡尔曼滤波器或神经网络的估算技术,但两者都存在问题。本研究提出了另一种估算方法,其基础是将侧滑角分为运动贡献和动态贡献,并观察到运动贡献可以直接估算。因此,本文致力于估算动态侧滑角,并通过利用侧向加速度的参数插值法获得动态侧滑角。在此过程中,只使用了传统车载传感器提供的数据。在 dSPACE 设备中在线运行估算器的情况下,在全尺寸车辆上进行了几次机动,并展示了实验结果,最终证明了所提方法的有效性和实时可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信