{"title":"Experimental characterization of the crashworthiness of carbon fiber reinforced epoxy composites","authors":"","doi":"10.1016/j.paerosci.2024.101003","DOIUrl":"10.1016/j.paerosci.2024.101003","url":null,"abstract":"<div><p><span>The crashworthiness of a structure is a measure of its protective capability under dynamic events by absorbing the crash energy in a controlled way. Fiber reinforced composite<span> materials can represent a valid alternative to ductile metals as impact energy absorbers in a </span></span>crashworthy structure<span>. In fact, composites are characterized by high mechanical properties coupled with low weight, capability to be designed by tailoring the specific requirements and good energy absorption capabilities. However, the impact resistance and the damage modes of long fiber composites involve different factors (constituent materials, geometry, lay up, manufacturing process) and are difficult to predict. In addition, there are no standard experimental procedures to assess the crashworthiness of composite materials. Therefore, a large and proper experimental characterization on composites with different geometries can be useful to understand the failure mechanisms under dynamic loads.</span></p><p><span>In this work, three different kinds of carbon fiber epoxy composites have been realized by </span>vacuum infusion<span><span> process in order to investigate the effect of the width and the shape. In particular, two plane and one C-shaped composites have been manufactured and characterized with Charpy test at different </span>impact velocity<span><span> according to the three-point bending procedure. Further, in-plane compression tests on larger flat composites have been performed by using an anti-buckling fixture to evaluate the specific Energy Absorption (SEA). Results evidenced the effect of the impact velocity on the impact resistance, the greatest </span>rigidity of the c-shaped composite and the damage modes.</span></span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101003"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140777164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crashworthiness design and evaluation of civil aircraft structures","authors":"","doi":"10.1016/j.paerosci.2024.101000","DOIUrl":"10.1016/j.paerosci.2024.101000","url":null,"abstract":"<div><p>One of the most critical air transportation issues is the passengers' protection during collision and impact events that must be absorbed in a controlled way in order to reduce damages. The capability of an aircraft to eliminate injuries in relatively mild impacts and to reduce severe effects on occupants in critical crashes is called crashworthiness. The crashworthiness is the ability of a structure to protect occupants during dynamic events. It is usually measured by the capacity of a structural system to dissipate kinetic impact energy by itself, by means of a controlled and predictable deformation aimed to minimize stresses and accelerations on passengers during a crash. In aeronautical applications, the crashworthiness is dominated by the crash response characteristics of typical fuselage sections (including occupant/seat restraint system), and the crashworthiness evaluation mainly includes fuselage structural response evaluation and occupants’ level of injury evaluation. This special issue consists of four papers, starting with a review of the crashworthiness design and evaluation aspects of civil aircraft fuselage structures, followed by a review of the impact response characteristics and the crashworthy design principles for composite fuselage structures. The third paper addresses the issue of the lack of standard experimental procedures to assess the crashworthiness of composite structures whereas the fourth paper describes a numerical model for the simulation of the side impact of an aircraft passenger.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101000"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenbao Xue , Han Cai , Steve Gehly , Moriba Jah , Jingrui Zhang
{"title":"Review of sensor tasking methods in Space Situational Awareness","authors":"Chenbao Xue , Han Cai , Steve Gehly , Moriba Jah , Jingrui Zhang","doi":"10.1016/j.paerosci.2024.101017","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101017","url":null,"abstract":"<div><p>To ensure the secure operation of space assets, it is crucial to employ ground and/or space-based surveillance sensors to observe a diverse array of anthropogenic space objects (ASOs). This enables the monitoring of abnormal behavior and facilitates the timely identification of potential risks, thereby enabling the provision of continuous and effective Space Situational Awareness (SSA) services. One of the primary challenges in this endeavor lies in optimizing the tasking of surveillance sensors to maximize SSA capabilities. However, the complexity of the space environment, the vast number of ASOs, and the limitations imposed by available sensor resources present significant obstacles to effective sensor management. To tackle these challenges, various sensor tasking methods have been developed over the past few decades. In this paper, we comprehensively outline the fundamental characteristics of sensor tasking missions, and later examine the corresponding objective functions and algorithms employed for efficient optimization, respectively. Furthermore, we explore the practical application of sensor tasking methods in diverse organizations and provide insights into potential directions for future research, aiming to stimulate further advancements in this field.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101017"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian Baker-McEvilly , Surabhi Bhadauria , David Canales , Carolin Frueh
{"title":"A comprehensive review on Cislunar expansion and space domain awareness","authors":"Brian Baker-McEvilly , Surabhi Bhadauria , David Canales , Carolin Frueh","doi":"10.1016/j.paerosci.2024.101019","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101019","url":null,"abstract":"<div><p>The Cislunar region is crucial for expanding human presence in space in the forthcoming decades. This paper presents a comprehensive review of recent and anticipated Earth–Moon missions, and ongoing space domain awareness initiatives. An introduction to the dynamics as well as periodic trajectories in the Cislunar realm is presented. Then, a review of modern Cislunar programs as well as smaller missions are compiled to provide insights into the key players pushing towards the Moon. Trends of Cislunar missions and practices are identified, including the identification of regions of interest, such as the South Pole and the Near-rectilinear halo orbit. Finally, a review of the current state and short-comings of space domain awareness (SDA) in the region is included, utilizing the regions of interest as focal points for required improvement. The SDA review is completed through the analysis of the Artemis 1 trajectory.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101019"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of concentrated vortex aerodynamics: Current CFD capability survey","authors":"James M. Luckring , Arthur Rizzi","doi":"10.1016/j.paerosci.2024.100998","DOIUrl":"10.1016/j.paerosci.2024.100998","url":null,"abstract":"<div><p>Concentrated vortex flows contribute to the aerodynamic performance of aircraft at elevated load conditions. For military interests, the vortex flows are exploited at maneuver conditions of combat aircraft and missiles. For transport interests, the vortex flows are exploited at takeoff and landing conditions as well as at select transonic conditions. Aircraft applications of these vortex flows are reviewed with a historical perspective followed by a discussion of the underlying physics of a concentrated vortex flow. A hierarchy of computational fluid dynamics simulation technology is then presented followed by findings from a capability survey for predicting concentrated vortex flows with computational fluid dynamics. Results are focused on military and civil fixed-wing aircraft; only limited results are included for missiles, and rotary-wing applications are not assessed. Opportunities for predictive capability advancement are then reported with comments related to digital transformation interests. A hierarchical approach that merges a physics-based perspective of the concentrated vortex flows with a systems engineering viewpoint of the air vehicle is also used to frame much of the discussion.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 100998"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000241/pdfft?md5=574b1e6a49905460d7e136edfe935f5f&pid=1-s2.0-S0376042124000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of fault management issues in aircraft systems: Current status and future directions","authors":"A. Zolghadri","doi":"10.1016/j.paerosci.2024.101008","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101008","url":null,"abstract":"<div><p>The academic community has extensively studied fault management in dynamical and cyber-physical systems, leading to the development of various model-based and data-driven/learning-enabled methods. Although these advanced designs show promise for improving conventional practices in aircraft systems, there is a noticeable disparity between academic methodologies and the specific needs of the aviation industry. The paper begins with an examination of the current practices within the aviation industry alongside the academic state of the art. It highlights commonly overlooked issues that hinder the transition from laboratory development to practical flight applications. Looking ahead, the paper anticipates evolving needs driven by the transition towards greater autonomy and intelligence within connected and distributed cyber-physical flight environments. This includes the emerging trend towards the introduction of Single Pilot Operations (SPO). The paper presents an outline of a combined model-based/data-driven vision, under human oversight, to navigate this complex transition.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101008"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing detonation propulsion with jet in cross-flow: A comprehensive review","authors":"Bo Zhang","doi":"10.1016/j.paerosci.2024.101020","DOIUrl":"10.1016/j.paerosci.2024.101020","url":null,"abstract":"<div><p><span>Compared with traditional deflagration-based systems, detonation-based propulsion systems<span><span><span> offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust </span>detonation wave<span> propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and </span></span>fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow </span></span>physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101020"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion
{"title":"Friction damping for turbomachinery: A comprehensive review of modelling, design strategies, and testing capabilities","authors":"Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion","doi":"10.1016/j.paerosci.2024.101018","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101018","url":null,"abstract":"<div><p>This paper presents a comprehensive review of recent advancements in modelling approaches, design strategies, and testing techniques applied to friction damping in turbomachinery. It critically evaluates experimental testing, design processes, and optimisation studies, along with the latest developments in numerical modelling techniques. The review begins with an overview of vibration mitigation methods and the historical development of friction dampers for bladed disk systems. Subsequent sections explore research efforts aimed at enhancing numerical and simulation modelling capabilities, encompassing contact friction models, reduced-order modelling methods, and numerical solvers suitable for real-world applications and industrial high-fidelity models. The paper also delves into available testing rigs for experimental validation and characterisation of various friction damper types, as well as the literature on uncertainty quantification in friction damping. It concludes by highlighting recent trends in novel concepts, modelling techniques, and testing technologies shaping the design of next-generation friction dampers.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101018"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000447/pdfft?md5=86f88d315071120aa1d1bdfaa67b6d6e&pid=1-s2.0-S0376042124000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire
{"title":"Discontinuous Galerkin methods for hypersonic flows","authors":"Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire","doi":"10.1016/j.paerosci.2024.100999","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100999","url":null,"abstract":"<div><p>In recent years, high-order discontinuous Galerkin (DG) methods have emerged as an attractive approach for numerical simulations of compressible flows. This paper presents an overview of the recent development of DG methods for compressible flows with particular focus on hypersonic flows. First, we survey state-of-the-art DG methods for computational fluid dynamics. Next, we discuss both matrix-based and matrix-free iterative methods for the solution of discrete systems stemming from the spatial DG discretizations of the compressible Navier–Stokes equations. We then describe various shock capturing methods to deal with strong shock waves in hypersonic flows. We discuss adaptivity techniques to refine high-order meshes, and synthetic boundary conditions to simulate free-stream disturbances in hypersonic boundary layers. We present a few examples to demonstrate the ability of high-order DG methods to provide accurate solutions of hypersonic laminar flows. Furthermore, we present direct numerical simulations of hypersonic transitional flow past a flared cone at Reynolds number <span><math><mrow><mn>10</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, and hypersonic transitional shock wave boundary layer interaction flow over a flat plate at Reynolds number <span><math><mrow><mn>3</mn><mo>.</mo><mn>97</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. These simulations run entirely on hundreds of graphics processing units (GPUs) and demonstrate the ability of DG methods to directly resolve hypersonic transitional flows, even at high Reynolds numbers, without relying on transition or turbulence models. We end the paper by offering our perspectives on error estimation, turbulence modeling, and real gas effects in hypersonic flows.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100999"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song
{"title":"Recent progress of efficient low-boom design and optimization methods","authors":"Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song","doi":"10.1016/j.paerosci.2024.101007","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101007","url":null,"abstract":"<div><p>Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101007"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000332/pdfft?md5=1c50a50d52fa19275511969b31171690&pid=1-s2.0-S0376042124000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}