Progress in Aerospace Sciences最新文献

筛选
英文 中文
Compressible vortex loops and their interactions 可压缩涡环及其相互作用
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.paerosci.2024.101048
Murugan Thangadurai , Konstantinos Kontis , Craig White , Abhishek Kundu
{"title":"Compressible vortex loops and their interactions","authors":"Murugan Thangadurai ,&nbsp;Konstantinos Kontis ,&nbsp;Craig White ,&nbsp;Abhishek Kundu","doi":"10.1016/j.paerosci.2024.101048","DOIUrl":"10.1016/j.paerosci.2024.101048","url":null,"abstract":"<div><div>Vortex loops are compact toroidal structures wherein fluid rotation forms a closed loop around a fictitious axis, manifest in many natural occurrences. These phenomena result from brief impulses through vents or apertures in fluid systems, such as in caves, volcanic crusts, downbursts, or the descent of liquid droplets. The majority of naturally occurring and laboratory-generated vortex loops, studied for fundamental research on their formation, growth, instability, and dissolution, are classified as incompressible. This categorisation denotes negligible alterations in thermodynamic properties within the vortex loop. However, a distinct category of vortex loops emerges from processes involving artillery, shock tubes, explosions, chemical interactions, and combustion. This class primarily constitutes compressible vortex loops. Their presence in flow fields spans over a century, and they have been observed since the application of open-ended shock tubes to explore phenomena like diffracting shock waves, blast wave interactions with objects, and noise mitigation. The study and comprehension of compressible vortex loops and their interactions have historically relied heavily on optical techniques, lacking comprehensive insight into the intricate flow dynamics. Nevertheless, the advancements in flow visualisation tools and computational capabilities in the 21st century have significantly aided scientists in scrutinising and characterising these vortex loops and their interactions in intricate detail. Unfortunately, a comprehensive review of the literature addressing compressible vortex loops originating from shock tubes, their evolution, and interactions with shockwaves and various objects, including walls, appears lacking. This review article aims to address this gap.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"150 ","pages":"Article 101048"},"PeriodicalIF":11.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of lunar-based manufacturing and construction 全面审查月球制造和建设
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.paerosci.2024.101045
Mohammad Azami , Zahra Kazemi , Sare Moazen , Martine Dubé , Marie-Josée Potvin , Krzysztof Skonieczny
{"title":"A comprehensive review of lunar-based manufacturing and construction","authors":"Mohammad Azami ,&nbsp;Zahra Kazemi ,&nbsp;Sare Moazen ,&nbsp;Martine Dubé ,&nbsp;Marie-Josée Potvin ,&nbsp;Krzysztof Skonieczny","doi":"10.1016/j.paerosci.2024.101045","DOIUrl":"10.1016/j.paerosci.2024.101045","url":null,"abstract":"<div><div>As humankind prepares to establish outposts and infrastructure on the Moon, the ability to manufacture parts and buildings on-site is crucial. While transporting raw materials from Earth can be costly and time-consuming, in-situ resource utilization (ISRU) presents an attractive alternative. This review paper aims to provide a thorough examination of the current state and future potential of Lunar-based manufacturing and construction (LBMC), with a particular focus on the prospect of utilizing in-situ resources and additive manufacturing. The paper analyzes existing research on LBMC from various perspectives, including different manufacturing techniques and compositions, the potential of ISRU for LBMC, characterization of built parts and structures, the role of energy sources and efficiency, the impact of low-gravity and vacuum conditions, and the feasibility of using artificial intelligence, automation, and robotics. By synthesizing these findings, this review offers valuable insights into the challenges and opportunities that lie ahead for LBMC.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"150 ","pages":"Article 101045"},"PeriodicalIF":11.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space sails for achieving major space exploration goals: Historical review and future outlook 用于实现主要太空探索目标的太空帆船:历史回顾与未来展望
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.paerosci.2024.101047
Maximilien Berthet , James Schalkwyk , Onur Çelik , Debdut Sengupta , Ken Fujino , Andreas M. Hein , Luciana Tenorio , Josué Cardoso dos Santos , S. Peter Worden , Philip D. Mauskopf , Yasuyuki Miyazaki , Ikkoh Funaki , Shinjiro Tsuji , Piotr Fil , Kojiro Suzuki
{"title":"Space sails for achieving major space exploration goals: Historical review and future outlook","authors":"Maximilien Berthet ,&nbsp;James Schalkwyk ,&nbsp;Onur Çelik ,&nbsp;Debdut Sengupta ,&nbsp;Ken Fujino ,&nbsp;Andreas M. Hein ,&nbsp;Luciana Tenorio ,&nbsp;Josué Cardoso dos Santos ,&nbsp;S. Peter Worden ,&nbsp;Philip D. Mauskopf ,&nbsp;Yasuyuki Miyazaki ,&nbsp;Ikkoh Funaki ,&nbsp;Shinjiro Tsuji ,&nbsp;Piotr Fil ,&nbsp;Kojiro Suzuki","doi":"10.1016/j.paerosci.2024.101047","DOIUrl":"10.1016/j.paerosci.2024.101047","url":null,"abstract":"<div><div>Space sails are a continuum of lightweight, thin, large-area, deployable technologies which are pushing forward new frontiers in space mobility and exploration. They encompass solar sails, laser-driven sails, drag sails, magnetic sails, electric sails, deployable membrane reflectors, deployable membrane antennas, and solar power sails. Some have been flight tested with operational heritage, while some are concepts planned to reach maturity in the coming decades. The number of flown and planned missions has increased rapidly in the past fifteen years. In this context, it is time to recognise the advantages of space sails for supporting the achievement of a wide range of major space exploration goals. This paper evaluates, for the first time, synergies between the broad spectrum of space sail technologies, and major space exploration ambitions around the world. The study begins by looking to the past, performing a global, historical review of space sails and related enabling technologies. The current state of the art is mapped against this technological heritage. Looking to the future, a review of major space exploration goals in the next decades is conducted, highlighting domains where space sails may offer transformational opportunities. It is hoped that this paper will further the ongoing transition of space sails from a promising flight-proven technology into a go-to component of space mission programme planning.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"150 ","pages":"Article 101047"},"PeriodicalIF":11.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responsive tolerant control: An approach to extend adaptability of launch vehicles 反应容限控制:扩展运载火箭适应性的方法
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-08-01 DOI: 10.1016/j.paerosci.2024.101028
Zhengyu Song , Hao Pan , Menghan Shao
{"title":"Responsive tolerant control: An approach to extend adaptability of launch vehicles","authors":"Zhengyu Song ,&nbsp;Hao Pan ,&nbsp;Menghan Shao","doi":"10.1016/j.paerosci.2024.101028","DOIUrl":"10.1016/j.paerosci.2024.101028","url":null,"abstract":"<div><p>This paper reviews the development and state-of-the-art research of attitude control technologies for launch vehicles, as well as the application evaluations of the responsive tolerant control (RTC) technology. First, the control theories and methods related to launch vehicles are classified and surveyed. Although studies in this field are still active, many new methods have not exhibited impressive advantages over a well-tuned gain scheduling-based traditional solution when dealing with a complete rigid–flexible-sloshing model, and few have been adopted for in-flight use. The conservatism in applications stems from the distinctive dynamical characteristics of launch vehicles, which are discussed in detail thereafter. However, as traditional methods also face challenges in meeting the increasing new requirements, an innovative solution, namely RTC, has gradually found its role in robust launch vehicle applications. The RTC differs from the concept of adaptive control in that it has no effect under most conventional operations but responds to certain scenarios in a timely manner, and these scenarios include unmodeled modes, unforeseen disturbances far beyond prescribed limits, and unexpected failures where the fundamental assumptions implied in the feedback control theories or design guidelines are violated. After introducing a practical architecture of RTC, three methods are reviewed and their limitations are analyzed: an adaptive gain and damping adjustment method to deal with unmodeled modes, an angular-acceleration-based active load-relief method to reduce bending moments, and online identification and reconstruction of the command mapping relationship to counter the polarity errors. The RTC introduced in the paper has been validated from an applied and computational domain by flights or simulations with high fidelity, thus effectively improving the robustness and the adaptability of launch vehicles.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"149 ","pages":"Article 101028"},"PeriodicalIF":11.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions 航空航天晶格结构增材制造设计系统综述:当前趋势和未来方向
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-17 DOI: 10.1016/j.paerosci.2024.101021
Numan Khan, Aniello Riccio
{"title":"A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions","authors":"Numan Khan,&nbsp;Aniello Riccio","doi":"10.1016/j.paerosci.2024.101021","DOIUrl":"10.1016/j.paerosci.2024.101021","url":null,"abstract":"<div><p>Lattice structures, produced by repeated unit cells in the particular pattern, offer a high strength-to-weight ratio. The current advancement in Additive manufacturing (AM) technology, creating complex geometries like lattice structures has revolutionized production across various industries. While several reviews have focused on different specific aspects of lattice structures, a comprehensive overview of recent advancements of lattice in aerospace structural applications is lacking.</p><p>Therefore, a comprehensive review of lattice structures used in aerospace lightweight applications manufactured through AM is presented here. Basic classification of lattice structure is presented followed by detailed study of several factors influencing mechanical properties of lattice structures, crucial for aerospace lightweight application. Current trends in manufacturing technologies of lattice structures are analyzed in detail with identification of capabilities and limitations. Furthermore, detailed literature on the lattice structure optimization techniques is presented with current limitations. Furthermore, the engineering applications of lattice structures in aerospace lightweight, along with the fabrication processes involved, challenges in applications of lattice in aerospace applications and future research directions are reported.</p><p>By providing insights into current research trends and future directions, this review serves as a valuable resource for researchers and engineers involved in the design and development of lightweight aerospace lattice structures. It lays the groundwork for the exploration of new and innovative lattice structures tailored to meet the evolving needs of the aerospace industry.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"149 ","pages":"Article 101021"},"PeriodicalIF":11.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000472/pdfft?md5=4d41a9c90c90fc3ddcd28a8ce3473857&pid=1-s2.0-S0376042124000472-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the use of hybrid shock absorbers to increase safety of commercial aircraft passengers during a crash event 关于使用混合减震器提高坠机事件中商用飞机乘客的安全性
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI: 10.1016/j.paerosci.2024.101004
{"title":"On the use of hybrid shock absorbers to increase safety of commercial aircraft passengers during a crash event","authors":"","doi":"10.1016/j.paerosci.2024.101004","DOIUrl":"10.1016/j.paerosci.2024.101004","url":null,"abstract":"<div><p>the passive safety of aircraft passengers is such an important aspect in the design of aircraft structures as strength and fatigue concerns. The development of methods and devices to prevent passenger injuries is the subject of continuous efforts. The mission is to minimize stresses and accelerations on passengers during a crash. Over the years, studies on crash phenomena have been focused on experimental tests, using full-scale structures and Anthropomorphic Test Devices (ATDs) to assess the consequences of impact phenomena on the human body. However, due to the high costs of experimental campaigns and the difficulty of controlling all relevant parameters, the need of efficient numerical models capable of validating experimental data has increased. This is specifically relevant for tests on ATDs.</p><p>In the frame of this work, the side-impact of an aircraft passenger have been numerically investigated positioned on a window-side seat of an aluminium commercial aircraft fuselage a World SID-based dummy. An attempt to increase the aircraft crashworthiness was made placing in correspondence with the head and the shoulders of the dummy hybrid sandwich shock absorbers. In order to validate the considered dummy model, a lateral impact against a flat barrier has been carried out. The obtained numerical results have been cross-compared with literature experimental data. Then, the side-impact behaviour of the dummy within a fuselage section has been investigated, with the aim to verify the absorption capability of the shock absorbers and to quantify their effect on the safety of the dummy. The employment of the shock absorbers allowed to reduce the acceleration peaks experienced by the dummy's head up to 50%.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101004"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000307/pdfft?md5=d5a2de844b81eaf35c10fe60bc4b9ddc&pid=1-s2.0-S0376042124000307-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140768389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact response and crashworthy design of composite fuselage structures: An overview 复合材料机身结构的冲击响应和防撞设计:概述
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI: 10.1016/j.paerosci.2024.101002
{"title":"Impact response and crashworthy design of composite fuselage structures: An overview","authors":"","doi":"10.1016/j.paerosci.2024.101002","DOIUrl":"10.1016/j.paerosci.2024.101002","url":null,"abstract":"<div><p><span>Airplanes are inevitably subjected to various impact loading<span> conditions in the event of emergency landing. An airplane crash scenario is a complex nonlinear impact event which involves large deformation<span>, material fracture, structural failure, and dynamic contact. The impact response becomes more complicated due to the presence of composite materials, which are becoming the dominated choice for aircraft components. However, the impact damage and failure severity of composite fuselage sections can be effectively alleviated with optimized energy absorbing (EA) design. Accordingly, the crashworthy design of fuselage sections has always remained a top priority to prevent catastrophic structural failure and significant casualties. This paper presents a systematic literature review on the impact response and EA design of composite fuselage structures. Firstly, the typical composite materials such as composite tubes, corrugated </span></span></span>composite plates<span>, hybrid composite structures and bio-inspired composite materials are introduced to dissipate the impact kinetic energy during a crash. Then, the analytical models and finite element modeling<span> methods of composite bolted joint<span> structures are described to investigate their impact response and failure mode. The crashworthy design of typical composite fuselage structures including sub-cargo support struts, cabin floor support struts, fuselage frame and cabin floor/fuselage frame connection are described in this paper. Finally, an emphasis is placed on the evaluation criteria of the occupant crash safety and the crashworthy evaluation method of fuselage structures.</span></span></span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101002"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on the crashworthiness design and evaluation of fuselage structure for occupant survivability 机身结构的耐撞性设计和乘员生存能力评估综述
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI: 10.1016/j.paerosci.2024.101001
{"title":"Review on the crashworthiness design and evaluation of fuselage structure for occupant survivability","authors":"","doi":"10.1016/j.paerosci.2024.101001","DOIUrl":"10.1016/j.paerosci.2024.101001","url":null,"abstract":"<div><p>Crashworthiness is the ability of civil aircraft fuselage<span><span> structure and internal systems to maximum protect the occupants’ safety in a crash or emergency landing event, and is an important embodiment of the civil aircraft safety, which can determine the occupant survivability<span> to a certain extent. The crashworthiness is dominated by the crash response characteristics of typical fuselage section (including occupant/seat restraint system), and the crashworthiness evaluation mainly includes fuselage structural response evaluation and occupant injury evaluation. Firstly, the crashworthiness requirements are sorted out according to the Airworthiness Standards of transport category airplanes and Special Conditions, and the </span></span>research work on drop tests and crashworthiness numerical simulation of fuselage section are gathered. Then, the failure of typical skin-stringer-frame structures and fuselage section are analyzed, and the crash safety evaluation criteria are summarized. After that, the impact tolerance of various parts of human (head, neck, thoracic, spine, abdomen, extremity) and the occupant injury evaluation criteria are summarized. In addition, the crashworthiness design principles and design methods of fuselage section are outlined for occupant survivability. Finally, the crashworthiness evaluation under different crash factors and conditions (impact velocity, impact ground, cargo loading and aircraft wing position) are summed up, and the aircraft crashworthiness is comprehensively evaluated through integrating the survivable volume, the retention strength, the occupant injury and the emergency evacuation, and the crashworthiness evaluation process is outlined. This article is intended as a comprehensive literature review of crashworthiness design and evaluation of fuselage structure for occupant survivability.</span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101001"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental characterization of the crashworthiness of carbon fiber reinforced epoxy composites 碳纤维增强环氧树脂复合材料耐撞性的实验表征
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI: 10.1016/j.paerosci.2024.101003
{"title":"Experimental characterization of the crashworthiness of carbon fiber reinforced epoxy composites","authors":"","doi":"10.1016/j.paerosci.2024.101003","DOIUrl":"10.1016/j.paerosci.2024.101003","url":null,"abstract":"<div><p><span>The crashworthiness of a structure is a measure of its protective capability under dynamic events by absorbing the crash energy in a controlled way. Fiber reinforced composite<span> materials can represent a valid alternative to ductile metals as impact energy absorbers in a </span></span>crashworthy structure<span>. In fact, composites are characterized by high mechanical properties coupled with low weight, capability to be designed by tailoring the specific requirements and good energy absorption capabilities. However, the impact resistance and the damage modes of long fiber composites involve different factors (constituent materials, geometry, lay up, manufacturing process) and are difficult to predict. In addition, there are no standard experimental procedures to assess the crashworthiness of composite materials. Therefore, a large and proper experimental characterization on composites with different geometries can be useful to understand the failure mechanisms under dynamic loads.</span></p><p><span>In this work, three different kinds of carbon fiber epoxy composites have been realized by </span>vacuum infusion<span><span> process in order to investigate the effect of the width and the shape. In particular, two plane and one C-shaped composites have been manufactured and characterized with Charpy test at different </span>impact velocity<span><span> according to the three-point bending procedure. Further, in-plane compression tests on larger flat composites have been performed by using an anti-buckling fixture to evaluate the specific Energy Absorption (SEA). Results evidenced the effect of the impact velocity on the impact resistance, the greatest </span>rigidity of the c-shaped composite and the damage modes.</span></span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101003"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140777164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crashworthiness design and evaluation of civil aircraft structures 民用飞机结构的耐撞性设计和评估
IF 11.5 1区 工程技术
Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI: 10.1016/j.paerosci.2024.101000
{"title":"Crashworthiness design and evaluation of civil aircraft structures","authors":"","doi":"10.1016/j.paerosci.2024.101000","DOIUrl":"10.1016/j.paerosci.2024.101000","url":null,"abstract":"<div><p>One of the most critical air transportation issues is the passengers' protection during collision and impact events that must be absorbed in a controlled way in order to reduce damages. The capability of an aircraft to eliminate injuries in relatively mild impacts and to reduce severe effects on occupants in critical crashes is called crashworthiness. The crashworthiness is the ability of a structure to protect occupants during dynamic events. It is usually measured by the capacity of a structural system to dissipate kinetic impact energy by itself, by means of a controlled and predictable deformation aimed to minimize stresses and accelerations on passengers during a crash. In aeronautical applications, the crashworthiness is dominated by the crash response characteristics of typical fuselage sections (including occupant/seat restraint system), and the crashworthiness evaluation mainly includes fuselage structural response evaluation and occupants’ level of injury evaluation. This special issue consists of four papers, starting with a review of the crashworthiness design and evaluation aspects of civil aircraft fuselage structures, followed by a review of the impact response characteristics and the crashworthy design principles for composite fuselage structures. The third paper addresses the issue of the lack of standard experimental procedures to assess the crashworthiness of composite structures whereas the fourth paper describes a numerical model for the simulation of the side impact of an aircraft passenger.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101000"},"PeriodicalIF":11.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信